THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

NUMERICAL INVESTIGATION ON COOLING PERFORMANCE OF RANQUE-HILSCH VORTEX TUBE

ABSTRACT
A Ranque-Hilsch vortex tube (RHVT) is a mechanical device that separates a high pressure gas stream into low pressure hot and cold streams. In this study, four different two equation turbulence models namely the standard k-ε, RNG k-ε, Realizable k-ε and standard k-ω models were compared to identify the appropriate turbulence model for studying the energy separation effect in a RHVT. Comparison between the numerical and experimental results indicates that the standard k-ε model is better than other models in predicting the energy separation phenomenon. The distributions of temperature, pressure, and components of velocity have been obtained in order to understand the flow behavior inside the tube. The effect of cold outlet diameter on temperature drop and refrigeration capacity was studied. The effect of cold mass fraction on the movement of stagnation point and refrigeration capacity has been investigated. Moreover, the feasibility of improving the cooling performance of vortex tube using the cooling system was investigated. The present numerical results revealed that using the cooling system, the net energy transfer rate from cold inner region to the hot peripheral region increases, thereby improving the cooling performance of the device.
KEYWORDS
PAPER SUBMITTED: 2012-06-10
PAPER REVISED: 2013-04-07
PAPER ACCEPTED: 2013-05-04
PUBLISHED ONLINE: 2013-06-01
DOI REFERENCE: https://doi.org/10.2298/TSCI120610052P
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2014, VOLUME 18, ISSUE Issue 4, PAGES [1173 - 1189]
REFERENCES
  1. Eiamsa-Ard, S., Promvong, P., Review of Ranque-Hilsch effect in vortex tube, Renewable and Sustainable Energy, 12(2008), PP. 1822-1842.
  2. Ranque, G. J., Experiments on expansion a Vortex with Simultaneous Exhaust of Hot Air and Cold Air (in French), J. Phy. Radium. 7(1933), PP. 112-114.
  3. Hilsch, R., The use of Expansion of Gases in Centrifugal Field as a Cooling Process (in German), Rew Sci. Instrum. 18 (1946), PP. 208-214
  4. Method of natural gas liquefaction.Russia patent No.2202078 c2, April 2003.
  5. Bruno,T.,Laboratory applications of the vortex tube, Canadian Journal of Chemical Engineering. 64 (1987), PP.987-988.
  6. Martin,R.W.,Zilm,K.W.,Variable temperature system using vortex tube cooling and fiber optic temperature measurement for low temperature magic angle spinning NMR, Journal of Magnetic Resonance. 168 (2) (2004), PP. 202-209.
  7. Frohlingsdrof,W., Unger,H., Numerical investigations of the compressible flow and energy separation in the Ranque-Hilsch vortex tube, International Journal of Heat and Mass Transfer, 42 (1999), PP. 415-422.
  8. Aljuwayhel, N. F.,Nellis, G. F., Klein, S. A., Parametric and internal study of the vortex tube using a CFD model,International Journal of Refrigeration, 28 (2005), PP. 442-450.
  9. Skye, H. M.,Nellis, G. F., Klein, S. A., Comparison of CFD analysis to empirical data in a commercial vortex tube, International Journal of Refrigeration, 29 (2006), PP. 71-80.
  10. Behera,U., Paul,P. J., Dinesh, K., Jacob,S., Numerical investigation on flow behavior and energy separation in Ranque-Hilsch vortex tube, International Journal of Heat and Mass Transfer, 51 (2008), PP. 6077-6089.
  11. Eiamsa-ard, S., Promvonge,P., Numerical investigation of the thermal separation in a Ranque-Hilsch vortex tube, International Journal of Heat and Mass Transfer, 50 (2007), PP. 821-832.
  12. Farouk,T., Farouk,B., Large Eddy Simulation of the flow field and temperature separation in Ranque-Hlisch vortex tube,International Journal of Heat and Mass Transfer, 50 (2007), PP. 4724-4735.
  13. Shamsoddini, R.,HosseinNezhad, A., Numerical analysis of the effects of nuzzle number on the flow and power of cooling of a vortex tube ,International Journal of Refrigeration, 33 (2010), PP.774-782.
  14. HosseinNezhad, A., Shamsoddini, R., Numerical three dimensional analysis of the mechanism of flow and heat transfer in a vortex tube, Thermal Science. 13.4(2009), PP. 183-196.
  15. Bramo, A. R., Pourmahmoud,N., Computational Fluid Dynamic simulation of length to diameter ratio effects on the energy separation in a vortex tube, Thermal Science . 15. 3(2011), PP.833-848.
  16. Bramo, A. R., Pourmahmoud,N., A numerical study on the effect of length to diameter ratio and stagnation point on the performance of counter-flow Ranque-Hilsch vortex tubes, Australian Journal of Basic and Applied Sciences. 4. 10(2010), PP.4943-4957.
  17. Pourmahmoud, N, Bramo, A. R., The effect of L/D ratio on the temperature separation in the counter-flow vortex tube, International Journal of research and reviews in Applied Sciences, 6.1(2011), PP.60-68.
  18. Secchiaroli, A., Ricci, R., Montelpare, S., D'Alessandro, V., Numerical simulation of turbulent flow in a Ranque-Hilsch vortex tube, International Journal of Heat and Mass Transfer. 52(2009), PP. 5496-5511.
  19. Pourmahmoud, N., Hassanzadeh, A., Moutaby, O., Numerical analysis of the effect of helical nozzles gap on the cooling capacity of Ranque-Hilsch vortex tube, International Journal of Refrigeration. 35(2012), PP. 1473-1483.
  20. Pourmahmoud, N., Hassanzadeh, A., Moutaby, O., Bramo, A. R., Computational fluid dynamic analysis of helical nozzles effect on the energy separation in a vortex tube, Thermal Science. 16. 1(2012), PP. 151-166.
  21. Dutta, T., Sinhamahapatra, K.P., Bandyopdhyay, S.S., Comparison of different turbulence models in predicting the temperature separation in a Ranque-Hilsch vortex tube, International Journal of Refrigeration. 33(2010), PP. 783-792.
  22. Pouraria, H., Zangooee, M.R., Numerical investigation of vortex tube refrigerator with a divergent hot tube, Energy Procedia. 14(2012), PP. 1554-1559.
  23. Pourmahmoud, N., Hassanzadeh, A., Moutaby, O., Bramo, A., Numerical investigation of operating pressure effect on the performance of a vortex tube, Thermal Science, doi:10.2298/TSCI110907030P .
  24. Pourmahmoud, N., Izadi, A., Hassanzadeh, A., Jahangiramini, A., Computational Fluid Dynamics analysis of the influence of injection nozzle lateral outflow on the performance of Ranque-Hilsch vortex tube, Thermal Science, doi:10.2298/TSCI120704002P .
  25. Poshernev, N. V.,Khodorkov, I. L., Experience from the operation of a conical vortex tube with natural gas, Chemical and Petroleum engineering, 39 (2003), PP. 602-607.
  26. Nimbalkar,S. U., Muller, M. R.,An experimental investigation of the optimum geometry for the cold end orifice of a vortex tube, Applied Thermal Engineering, 29(2009), PP.509-514.
  27. Eiamsa-ard,S.,Wongcharee,K.,Promvong, P., Experimental investigation on energy separation in a counter-flow Ranque-Hilsch vortex tube: Effect of cooling a hot tube, International communications in heat and mass transfer. 37(2010), PP. 156-162.
  28. Fluent User's Guide, Release 6.3.26, AnsysInc, USA, 2006.
  29. Gambit User's Guide, Release 2. 3. 16, AnsysInc, USA, 2006.
  30. Skye, H. M., Comparison of CFD analysis to empirical data in a commercial vortex tube, BSc Thesis, University of Wisconsin Madison, 2006.
  31. Xue, Y., Arjomandi, M., Kelso, R., Experimental study of the thermal separation in a vortex tube, dx.doi.org/10.1016/j.expthermflusci.2012.12.009
  32. Yakhot, V., Orszag, S.A., Renormalization Group Analysis of Turbulence. I. Basic Theory, Journal of Scientific Computing. 1(1986), PP. 3-51.
  33. Yakhot, V., Smith, L.M., The Renormalization Group, the epsilon-expansion and Derivation of Turbulence Models, Journal of Scientific Computing. 7(1992), PP. 35-61.
  34. Pope, S. B., Turbulent Flows, Cambridge University Press, 2000.
  35. Han, Z., Reitz, R. D., Turbulence modeling of internal combustion engines using RNG k-e models, Combustion science and technology, 106(1995), PP. 267-295.
  36. Amini, B., Khaleghi, H., A comparative study of variant turbulence modeling in the physical behaviors of diesel spray combustion, Thermal Science, 15(2011), PP. 1081-1093.
  37. Saidi,M.H.,Valipour,M.S.,Experimental Modeling of vortex tube refrigerator,Applied Thermal Engineering, 23(2003), PP. 1971-1980.
  38. Promvonge,P.,Eiamsa-ard, A. S., Investigation on the vortex thermal separation in a vortex tube refrigerator, ScienceAsia, 31 (2005), PP.215-223.
  39. Ahlborn, B., Groves, S., Secondary flow in a vortex tube, Fluid Dynamics Research,21 (1997), PP. 73-86
  40. Gao, C. M.,Bosschaart, K. S.,Zeegers, J. C. H., de Waele, A. T. A. M., Experimental study on a simple Ranque- Hilsch vortex tube, Cryogenics,45(3) (2005), PP. 173-183.
  41. Fulton, C. D.,Ranque's tube, Journal of refrigeration engineering, 5 (1950), PP. 473-479.
  42. Aydin,O.,Baki,M., An experimental study on design parameters of a counterflow vortex tube, Energy. 31(2006), PP. 2763-2772.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence