THERMAL SCIENCE

International Scientific Journal

External Links

POSSIBILITIES TO IDENTIFY ENGINE COMBUSTION MODEL PARAMETERS BY ANALYSIS OF THE INSTANTANEOUS CRANKSHAFT ANGULAR SPEED

ABSTRACT
In this paper, novel method for obtaining information about combustion process in individual cylinders of a multi-cylinder Spark Ignition Engine based on instantaneous crankshaft angular velocity is presented. The method is based on robust box constrained Levenberg-Marquardt minimization of nonlinear Least Squares given for measured and simulated instantaneous crankshaft angular speed which is determined from the solution of the engine dynamics torque balance equation. Combination of in-house developed comprehensive Zero-Dimensional Two-Zone SI engine combustion model and analytical friction loss model in angular domain have been applied to provide sensitivity and error analysis regarding Wiebe combustion model parameters, heat transfer coefficient and compression ratio. The analysis is employed to evaluate the basic starting assumption and possibility to provide reliable combustion analysis based on instantaneous engine crankshaft angular speed. [Projekat Ministarstva nauke Republike Srbije, br. NPEE-290025 and TR-14074]
KEYWORDS
PAPER SUBMITTED: 2012-09-07
PAPER REVISED: 2012-11-18
PAPER ACCEPTED: 2012-12-29
PUBLISHED ONLINE: 2013-01-20
DOI REFERENCE: https://doi.org/10.2298/TSCI120907006P
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2014, VOLUME 18, ISSUE Issue 1, PAGES [97 - 112]
REFERENCES
  1. Tomic, M., et. al., A quick, simplified approach to the evaluation of combustion rate from an internal combustion engine indicator diagram. Thermal Science, 12 (2008), 1, pp. 85-102.
  2. Hohenberg, G., Killman, I., Basic findings obtained from measurement of the combustion process. XIX Fisita Congress, Melbourne, Australia, 1982, paper 8216
  3. Brunt, M. F. J., Pond, C. R., Evaluation of techniques for absolute cylinder pressure correction. SAE 1997 International Congress & Exposition, Detroit, MI, USA, 1997, SAE Technical Papers, SAE 970036.
  4. Tomiæ, M., The Identification of Parameters of a Diesel Engine Thermodynamic and Flow Processes Mathematical Model (in Serbian), Ph. D. thesis, Faculty of Mechanical Engineering, University of Belgrade, Belgrade, 1987
  5. Lindström, F., Empirical Combustion Modeling in SI Engines, Ph.D. thesis. Machine Design. Royal Institute of Technology (KTH), Stockholm, 2005
  6. Tunestal, P., Self-tuning gross heat release computation for internal combustion engines. Control Engineering Practice, 17 (2009), 4, pp. 518-524.
  7. Andersson I., Thor M., McKelvey T.: The torque ratio concept for combustion monitoring of internal combustion engines, Control Engineering Practice, Vol. 20, issue 6, pp. 561-568, 2012.
  8. Schagerberg, S., McKelvey, T., Instantaneous Crankshaft Torque Measurements - Modeling and Validation, SAE 2003 World Congress & Exhibition, Detroit, MI, USA, 2000, Session: Electronic Engine Controls SAE Technical Papers, SAE 2003-01-0713.
  9. Hamedoviæ H, Raichle F, Bhöme J. F.: In-cylinder pressure reconstruction for multi-cylinder SI-engine by combined processing of speed and one cylinder pressure, Proceeding on International Conference on Acoustics, Speech, and Signal Processing, 2005. Proceedings (ICASSP '05). IEEE 2005
  10. Raichle, F., et. al., Verfahren und Vorrichtung zur Ermittlung eines Winkellagesignals bei einer Brennkraftmaschine (Method and device for detecting the angular position signal in an Internal Combustion Engine), U.S. Patent WO 2005/083252 A1, 2005.
  11. Fehrenbach, H., et. al., Determination of engine torque from the angular speed signal (in German) Motortechnische Zeitschrift - MTZ, 63 (2002), 12, pp. 1020-1027
  12. Fehrenbach, H., Held, W., Zuther, F., Drehmomentsbestimmung bei Verbrennungsmotoren durch Auswertung der Kurbelwellen Winkelgeschwindigkeit, Motortechnische Zeitschrift - MTZ. 59 (1998) 314-319.
  13. Fehrenbach, H., et. al., Kompensation des Geberradfehlers im Fahrbetrieb, Motortechnische Zeitschrift - MTZ. 63 (2002) 588-591.
  14. Weißenborn E., Bossmeyer T., Bertram T.: Adaptation of a zero-dimensional cylinder pressure model for diesel engines using the crankshaft rotational speed, Mechanical Systems and Signal Processing 25 (2011) 1887-1910
  15. Pischinger, R., Klell, M., Sams, T., Thermodynamics of internal combustion engines (in German), Springer- Verlag. Wien, 2002
  16. Gordon, S., McBride, B. J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications: Part I - Analysis. NASA reference Publication, Report No. RP-1311-P1.
  17. Olikara, C., Borman, G. L., A Computer Program for Calculating Properties of Equilibrium Combustion Products with Some Applications to IC Engines. SAE Technical Papers, 1975, SAE 750468.
  18. Wannatong, K., Simulation algorithm for piston ring dynamics, Simulation Modelling Practice and Theory, 16 (2008), 1, pp. 127-146.
  19. Bonatesta, F., Waters, B., Shayler, P. J., Burn angles and form factors for Wiebe function fits to mass fraction burned curves of a spark ignition engine with variable valve timing, International Journal of Engine Research, 11 (2010), 2, pp. 177-186.
  20. Heywood, J. B., Internal Combustion Engine Fundamentals. McGraw-Hill Inc., New York, 1988
  21. Woschni, G., Fieger, J., Experimental determination of the average local heat transfer coefficients in a gasoline engine(in German). Motortechnische Zeitschrift - MTZ, 42, (1981), 6, pp. 229-234.
  22. Hohenberg, G. (1980). Calculation of the gas heat transfer in diesel engines (in German), Motortechnische Zeitschrift - MTZ, 41 (1980), 7/8, pp. 321-326.
  23. Chang, J., et. al., New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux, 2004 Powertrain & Fluid Systems Conference & Exhibition, Tampa, FL, USA, 2004, Session: Homogeneous Charge Compression Ignition SAE Technical Papers, 2004, SAE 2004- 01-2996.
  24. Cho, K.-W., et. al., (2008). Experimental investigation of combustion and heat transfer in a direct-injection spark ignition engine via instantaneous combustion chamber surface temperature measurements. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222 (2008), 11, pp. 2219-2233.
  25. Wang, X., et. al., Heat release and heat flux in a spray-guided direct-injection gasoline engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 221 (2007), 11, pp. 1441-1452.
  26. Taraza, D., Possibilities to Reconstruct Indicator Diagrams by Analysis of the Angular Motion of the Crankshaft, International Off-Highway & Powerplant Congress & Exposition, Milwaukee, WI, USA, 1993, Session: International Off-Highway & Powerplant Congress & Exposition, SAE Technical Papers, SAE 932414
  27. Kallenberger C., H. Hamedoviæ H., Evaluation of Torque Estimation using Gray-Box and Physical Crankshaft Modeling, 15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland. (2008) 1529-1532.
  28. Kallenberger C., Hamedoviæ H., Comparison of the Extended Kalman Filter and the Unscented Kalman Filter for Parameter Estimation in Combustion Engines, 15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland. (2007) 2424-2428.
  29. Kiencke, U.: Engine misfire detection, Control Engineering Practice 7 (1999) 203—208
  30. Chen, S. X., Moskwa, J. J., Application of Nonlinear Sliding-Mode Observers for Cylinder Pressure Reconstruction. Control engineering Practice, 5 (1997) 8, pp. 1115-1121.
  31. Filipi, Z. S., Assanis, D. N. A Nonlinear, Transient, Single-Cylinder Diesel Engine Simulation for Predictions of Instantaneous Engine Speed and Torque. Journal of Engineering for Gas Turbines and Power, 123 (2001), 4, pp. 951-959
  32. Connolly, F. T., Yagle, A. E., Modeling and Identification of the Combustion Pressure Process in Internal Combustion Engines : II - Experimental Results. Journal of Engineering for Gas Turbines and Power, 115 (1993) 10, pp. 801-809.
  33. Hafner, K. E.., Maass, H.: Theorie der Triebwerksschwingungen der Verbrennungskraftmaschine, Springer Verlag, Wien, 1984
  34. Taylor, C. M., Engine Tribology: Tribology Series, Elsevier Science Publishers B.V., Amsterdam, Netherlands, 1993
  35. Taraza, D., Henein, N., Bryzik, W., Friction Losses in Multi-Cylinder Diesel Engines, SAE 2000 World Congress, Detroit, MI, USA, 2000, Session: CI & SI Power Cylinder Systems, SAE Technical Papers, 2000, SAE 2000-01-0921
  36. Stachowiak, G. W., Batchelor, A. W., Engineering Tribology, Butterworth-Heinemann, Elsevier Inc. , 2006
  37. Teodorescu, M., et. al., Simplified Elasto-Hydrodynamic Friction Model of the Cam-Tappet Contact, SAE 2003 World Congress & Exhibition, Detroit, MI, USA, 2003, SAE Technical Papers, SAE 2003-01-0985.

© 2022 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence