THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

HOMOTOPY PERTURBATION METHOD FOR VISCOUS HEATING IN PLANE COUETTE FLOW

ABSTRACT
In this paper, the problem of viscous heating in plane Couette flow is considered by the homotopy perturbation method. The non-linear terms are expanded to Taylor series of the homotopy parameter. The obtained solutions are shown graphically and are compared with the exact solutions. The obtained results illustrate the efficiency and convenience of the method.
KEYWORDS
PAPER SUBMITTED: 2013-01-18
PAPER REVISED: 2013-04-26
PAPER ACCEPTED: 2013-04-26
PUBLISHED ONLINE: 2013-12-28
DOI REFERENCE: https://doi.org/10.2298/TSCI1305355Y
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2013, VOLUME 17, ISSUE Issue 5, PAGES [1355 - 1360]
REFERENCES
  1. Turian, R. M., Bird, R. B., Viscous Heating in the Cone-and-Plate Viscometer II, Chem. Eng. Sci., 18 (1963), 11, pp. 689-696
  2. He, J.-H., Homotopy Perturbation Technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 3-4, pp. 257-262
  3. He, J.-H., A Coupling Method of a Homotopy Technique and a Perturbation Technique for Non-Linear Problems, Int. J. Nonlinear Mech., 35 (2000), 1, pp. 37- 43
  4. He, J.-H., An Elementary Introduction to the Homotopy Perturbation Method, Comput. Math. Appl., 57 (2009), 3, pp. 410-412
  5. He, J.-H., The Homotopy Perturbation Method for Nonlinear Oscillators with Discontinuities, Appl. Math. Comput., 151 (2004), 1, pp. 287-292
  6. He, J.-H., Homotopy Perturbation Method for Solving Boundary Value Problems, Phys. Lett. A, 350 (2006), 1-2, pp. 87-88
  7. He, J.-H., New Interpretation of Homotopy Perturbation Method, Int. J. Mod. Phys. B, 20 (2006), 18, pp. 2561-2568
  8. He, J.-H., Some Asymptotic Methods for Strongly Nonlinear Equations, Int. J. Mod. Phys. B, 20 (2006), 10, pp. 1141-1199
  9. He, J.-H., Asymptotic Methods for Solitary Solutions and Compactons, Abstr. Appl. Anal., 2012 (2012), pp. 1-130
  10. Ganji, D. D., et al., A New Modification of He's Homotopy Perturbation Method for Rapid Convergence of Nonlinear Undamped Oscillators, J. Appl. Math. Comput., 30 (2009), 1-2, pp. 181-192
  11. Odibat, Z., Momani, S., Modified Homotopy Perturbation Method: Application to Quadratic Riccati Differential Equation of Fractional Order, Chaos Soliton Fract., 36 (2008), 1, pp. 167-174
  12. Madania, M., et al., On the Coupling of the Homotopy Perturbation Method and Laplace Transformation, Math. Comput. Modelling, 53 (2011), 9-10, pp. 1937-1945
  13. Noor, M. A., Mohyud-Din, S. T., Variational Homotopy Perturbation Method for Solving Higher Dimensional Initial Boundary Value Problems, Math. Probl. Eng., 2008 (2008), pp. 1-11
  14. Belendez, A. et al., Application of a Modified He's Homotopy Perturbation Method to Obtain Higherorder Approximations of an x1/3 Force Nonlinear Oscillator, Phys. Lett. A, 371 (2007), 5-6, pp. 421-426
  15. Chowdhury, M. S. H., et al., The Multistage Homotopy-Perturbation Method: a Powerful Scheme for Handling the Lorenz System, Chaos Soliton Fract., 40 (2009), 4, pp. 1929-1937
  16. Wang, F., et al., A new Extended Homotopy Perturbation Method for Nonlinear Differential Equations, Math. Comput. Modelling, 55 (2012), 3-4, pp. 1471-1477
  17. Biazar, J., Ghazvini, H., Convergence of the Homotopy Perturbation Method for Partial Differential Equations, Nonlinear Anal. Real World Appl., 10 (2009), 5, pp. 2633-2640
  18. Hetmaniok, E., et al., Convergence and Error Estimation of Homotopy Perturbation Method for Fredholm and Volterra Integral Equations, Appl. Math. Comput., 218 (2012), 1, pp. 10717-10725
  19. Jafari, H., et al., Convergence of Homotopy Perturbation Method for Solving Integral Equations, Thai J. Math., 8 (2010), 3, pp. 511-520
  20. Noor, M. A., Mohyud-Din, S. T., Homotopy Perturbation Method for Solving Sixth-Order Boundary Value Problems, Comput. Math. Appl., 55 (2008), 12, pp. 2953-2972
  21. Noor, M. A., Mohyud-Din, S. T., An Efficient Algorithm for Solving Fifth-Order Boundary Value Problems, Math. Comput. Modelling, 45 (2007), 7-8, pp. 954-964
  22. Golbabai, A., Javidi, M., Application of Homotopy Perturbation Method for Solving Eighth-Order Boundary Value Problems, Appl. Math. Comput., 191 (2007), 2, pp. 334-346
  23. Mohyud-Din, S. T., Noor, M. A., Homotopy Perturbation Method for Solving Fourth-Order Boundary Value Problems, Math. Probl. Eng., 2007 (2007), pp. 1-15
  24. Mojahedi, M., et al., Static Pull-in Analysis of Electrostatically Actuated Microbeams using Homotopy Perturbation Method, Appl. Math. Modelling, 34 (2010), 4, pp. 1032-1041
  25. Yýldýrým, A., Ozi, S. T., Solutions of Singular IVPs of Lane-Emden Type by Homotopy Perturbation Method, Phys. Lett. A, 369 (2007), 1-2, pp. 70-76
  26. Yýldýrým, A., Solution of BVPs for Fourth-Order Integro-Differential Equations by Using Homotopy Perturbation Method, Comput. Math. Appl., 56 (2008), 12, pp. 3175-3180
  27. Shakeri, F., Dehghan, M., Inverse Problem of Diffusion Equation by He's Homotopy Perturbation Method, Phys. Scr., 75 (2007), 4, pp. 551-556
  28. Saberi, Nik, et al., An Approximate-Analytical Solution for the Hamilton-Jacobi-Bellman Equation via Homotopy Perturbation Method, Appl. Math. Modelling, 36 (2012), 11, pp. 5614-5623
  29. Ganji, D. D., et al., Application of Homotopy-Perturbation Method for Systems of Nonlinear Momentum and Heat Transfer Equations, Heat. Transf. Res., 38 (2007), 4, pp. 361-379
  30. Ganji, D. D., et al., Determination of Temperature Distribution for Annular Fins with Temperature Dependent Thermal Conductivity by HPM, Thermal Science, 15 (2011), 1, pp. 111-115

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence