International Scientific Journal

Authors of this Paper

External Links


Diffusion problem with a specification of considering liquid redistribution from a thin interlayer between two semi-infinite media in contact is developed. The basic approach involves an integral approach defining finite depths of penetration of the diffusant into the media and fractional half-time derivative of the boundary (at the interface) concentration. The approach is straightforward and avoids cumbersome calculations based on the idea to develop entire domain (for each of the contacting bodies) solutions. The results are compared to classical solutions, when they exist.
PAPER REVISED: 2013-05-19
PAPER ACCEPTED: 2013-05-19
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2013, VOLUME 17, ISSUE Issue 3, PAGES [651 - 664]
  1. Babushkin, G.A., Diffusion from Thin Layer into Two Semi-infinitely Large Bodies with different characteristics, Journal of Engineering Thermophysics, 47(1984),2, pp. 267-270. (English Translation, 47(1984) pp.943-945)
  2. Andersson, Chr., Fellers, Chr., Evaluation of the stress-strain properties in the thickness direction - particularly for thin and strong papers, Nordic Pulp and Paper Research Journal, 27 (2012),2, pp. 287-294.
  3. Hass, Ph., Wittel , F.K., Mendoza, M., Herrmann, H.J., Peter Niemz, P., Adhesive penetration in beech wood: experiments, Wood Sci Technol. 46 (2012),1-3, pp.243-256.
  4. Zhou, Y., Gale, W. F., North, T. H., Modelling of transient liquid phase bonding, International Materials Reviews, 40 (1995), 5, pp.181-196.
  5. Illingworth, T. C., Golosnoy, I. O., Gergely, V., Clyne, T. W., Numerical modelling of transient liquid phase bonding and other diffusion controlled phase changes, Journal of Materials Science 40 (2005),9-10, pp. 2505 - 2511.
  6. Marshall, S.J., Bayne, S.C., Baier R. , Tomsia , A.P., Grayson W. Marshall,, G.W., A review of adhesion science, Dental Materials , 26 (2010), 2, pp. e11-e16.
  7. Albaladejo; A., Montero; J., Gomez de Diego; R. Lopez-Valverde, A., Effect of adhesive application prior to bracket bonding with flowable composites , Angle Orthodontist, 81 (2011),4, pp.716-720.
  8. Mour, M., Das, D., Winkler, T., Hoenig , E., Mielke, G., ,Michael M. Morlock, M.M., Schilling, A.F., Advances in Porous Biomaterials for Dental and Orthopaedic Applications , Materials 2010, 3, pp. 2947-2974; doi:10.3390/ma3052947.
  9. Zhou, Y., Analytical modeling of isothermal solidification during transient liquid phase (TLP) bonding, Journal of Material Science Letters, 20 (2001), 9, pp. 841-844.
  10. Illingworth, T. C., Golosnoy, I. O., Clyne, T. W., Modelling of transient liquid phase bonding in binary systems-A new parametric study, Materials Science and Engineering, A 445-446 (2007), February, pp. 493-500
  11. Akram, M., Pasha, M.A., A numerical scheme for the parabolic equation subject to mass specification, International Journal of Information and Systems Sciences, 2 (2006), 3, pp.326-335.
  12. Dehghan, M. , On the numerical solution of the diffusion equation with a nonlocal boundary conditions, Mathematical Problems in Engineering, (2003), 2, pp.81-92.
  13. Dehghan, M., The one-dimensional heat equation subject to a boundary integral specification, Chaos, Solitons and Fractals 32 (2007), 2, pp. 661-675
  14. B. Soltanalizadeh, Numerical analysis of the one-dimensional heat equation subject to a boundary integral specification , Optics Communications 284 (2011), 8, pp 2109-2112
  15. Oldham , K.B. , Spanier ,J. , The Fractional calculus , Academic Press, New York, 1974.
  16. Tuck, B., Some explicit solutions to non-linear diffusion equation, J.Appl. Phys.D: Appl. Phys., 9 (1976), 1 August, 1559-1569.
  17. Pineda, S.M., Diaz, G., Coimbra, C.F.M., Approximation of Transient 1D Conduction in a Finite Domain Using Parametric Fractional Derivatives, Journal of Heat Transfer,133 (2011), July, Vol. pp. 071301-1 - 071301-6.
  18. Hristov, J. The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and Benchmark Exercises, Thermal Science, 13(2009), 2, pp.27-48.
  19. Hristov, J., Short-Distance Integral-Balance Solution to a Strong Subdiffusion Equation: A Weak Power-Law Profile, Int. Rev. of Chem. Eng., 2 (2010), 5, pp. 555-563.
  20. Ozisik, M.N., Heat Conduction, 2nd ed., John Wiley, New York, 1993.
  21. Schiff, J.L., The Laplace transform. Theory and applications, Springer, New York, 1991.
  22. Hristov, J. The Heat-Balance Integral: 2. A Parabolic profile with a variable exponent: the concept and numerical experiments, CR Mechanique, 340 (212), 7,pp. 493-500.
  23. dos Santos, M.C, Lenzi, E. , Gomes, E.M., Lenzi,, M.K. , Lenzi, E.K. , Development of Heavy Metal sorption Isotherm Using Fractional Calculus, Int. Rev. Chem. Eng., 3 (2011) ,6, pp.814-817.
  24. Siddique, I. , Vieru, D. , Stokes flows of a Newtonian fluid with fractional derivatives and slip at the wall, Int. Rev. Chem. Eng., 3 (2011) ,6, pp.822- 826.
  25. Pfaffenzeller, R.A., Lenzi, M.K., Lenzi, E.K. , Modeling of Granular Material Mixing Using Fractional Calculus, Int. Rev. Chem. Eng., 3 (2011), 6, pp. 818-821.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence