## THERMAL SCIENCE

International Scientific Journal

### FRACTAL HEAT CONDUCTION PROBLEM SOLVED BY LOCAL FRACTIONAL VARIATION ITERATION METHOD

**ABSTRACT**

This paper points out a novel local fractional variational iteration method for processing the local fractional heat conduction equation arising in fractal heat transfer.

**KEYWORDS**

PAPER SUBMITTED: 2012-11-24

PAPER REVISED: 2012-10-27

PAPER ACCEPTED: 2012-11-27

**THERMAL SCIENCE** YEAR

**2013**, VOLUME

**17**, ISSUE

**Issue 2**, PAGES [625 - 628]

- Hooft. G, A Confrontation with Infinity, Int. J. Mod. Phys. A., 15 (2000), pp.4395
- M. Majumder, N. Chopra, R. Andrews, et al. Nanoscale Hydrodynamics - Enhanced Flow in Carbon Nanotubes, Nature, 438 (2005), pp.44
- Y. Xuan, Wilfried Roetzel, Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Transfer, 43 (2000), pp.3701-3707
- Daniel Rayneau-Kirkhope, Y. Mao, Robert Farr, Ultralight Fractal Structures from Hollow Tubes, Phys. Rev. Letts, 109 (2012), 204301
- X. J. Yang, Heat Transfer in Discontinuous Media, Adv. Mech. Eng. Appl., 1 (3) (2012) pp. 47-53
- X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, USA, 2012.
- M. S. Hu, X. J. Yang, J. Fan, Approximation Solution to Local Fractional Volterra Integral Equations Arising in Fractal Heat Transfer, J. Nano Res., accepted, 2012.
- T. M. Shih, A literature survey on numerical heat transfer, Num. Heat Transfer, 5(4) (1982), pp. 369-420
- Meilanov, R., Shabanova, M., Akhmedov, E., A research note on a Solution of Stefan Problem with Fractional Time and Space Derivatives, Int. Rev. Chem. Eng., 3 (6) (2011), pp. 810-813
- Siddique, I., Vieru, D., Stokes Flows of a Newtonian Fluid with Fractional Derivatives and Slip at the Wall, Int. Rev. Chem. Eng., 3(6) (2011), pp. 822- 826.
- Y. Z. Povstenko, Thermoelasticity that uses fractional heat conduction equation, J. Math. Sci., 51 (2) (2009), pp. 293-246
- J. Hristov, Approximate solutions to fractional sub-diffusion equations: The heat-balance integral method, Eur. Phys. J. Spec. Topics, 193 (4) (2011), pp. 229-243
- J. Hristov, Heat-balance integral to fractional (half-time) heat diffusion sub-model, Thermal Sci., 14 (2) (2010), pp. 291-316
- J. Hristov, An exercise with the He's variation iteration method to a fractional bernoulli equation arising in transient conduction with non-linear heat flux at the boundary, Int. Rev. Chem. Eng., 4 (5) (2012), pp.489-497
- J. H. He, A new fractal derivation, Thermal Sci., 15 (2011), pp. 145-147
- Q. L. Wang, J.H. He, Z.B. Li, Fractional model for heat conduction in polar hairs, Thermal Sci.,16 (2) (2012), 339-342.
- Molliq, R. Y., Noorani, M. S. M., Hashim, I., Variational Iteration Method for Fractional Heat- and Wave-Like Equations, Nonlinear Analysis: R.W.A., 10 (3) (2009), pp. 1854-1869
- Sakar, M. G., Erdogan, F., Yyldirim, A., Variational Iteration Method for the Time-Fractional Fornberg-Whitham Equation, Comput. Math. Appl., 63 (9) (2012), pp. 1382-1388
- J. H. He, Q. L. Wang, J. Sun, Can polar bear hairs absorb environmental energy? Thermal Sci., 15 (3) (2011), 911-913
- J. Fan, J. F. Liu, J.H. He, Hierarchy of wool fibers and fractal dimensions, Int. J. Nonlin. Sci. Num., 9 (3) (2008), 293-296
- X. J. Yang, F. R Zhang, Local fractional variational iteration method and its algorithms, Adv. Comput. Math. Appl., 1(3) (2012), pp.139-145
- X. J. Yang, Local Fractional Integral Transforms, Progress in Nonlinear Science, 4 (2011), pp. 1-225
- X. J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic publisher Limited, Hong Kong, China, 2011
- J. H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B, 20 (10) (2006), 1141-1199
- G. C. Wu, Applications of the variational iteration method to fractional diffusion equations: local versus nonlocal Ones, Int. Rev. Chem. Eng., 4 (5) (2012), 505-510
- J. H. He, G. C. Wu, F. Austin, The Variational iteration method which should be followed, Nonlinear Sci. Letts. A, 1 (1) (2010), pp.1-30
- J. H. He, Asymptotic methods for solitary solutions and compactons, Abstract and Applied Analysis, 2012, 916793