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Introduction

Various transport phenomena in nano-scale [1-3] cannot be described by smooth con-
tinuum approach and need the fractal nature of the objects to be taken into account, for example
in nanoscale porous materials [4] and they are termed Cantor materials. In case of fractal objects
the fractal Fourier law should be used [5-7] in contrast to the continuous case when both the
classical and the fractional versions are valid [8-18]. For other fractional differential equations
see [19]. When the transport is performed in fractal objects the local temperature depends on the
fractal dimensions and examples for that exist in well-known media such as polar bear hair [17,
20] and wool [21]. In these cases the fractional calculus assuming smooth functions [9-15] due
to the continuum concept and the memory effects is not applicable. The problem invokes appli-
cation of local fractional models and relevant solution approaches providing adequate physical
results. The present paper shows how the local version of the variational iteration method [22]
can be applied to local fractional heat conduction equation relevant to a fractal heat transfer.

Local fractional heat conduction equation
Local fractional heat conduction equation with no heat generation in fractal media
reads [5-7]: s 0T (x,1) 04T (x, 1)
oxm T G
In eq. (1a), the transport coefficient K>* is the fractal thermal conductivity related to
fractal dimensions of materials [5-7]:

=0 at ¢>7, and inxe€[0,/] (1a)
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0% T (x,1) e 0% T(x,t) _
ox or*
The fractal heat diffusivity of the medium is defined as a* = pc,/K**.

The local fractional derivative of 7(x) of order « at x = x, is given by [5-7, 22-24]:
d*T)| oy AT ) —T(x)]
a — X=X ()C - X, )a

where A*[T(x) — T(xy)] = T (1 + a)A[T(x) — T(x,)].
The local fractional integral of 7(x) of order @ in the interval [a, b] is defined by [5-7,
22-24]:

0 (1b)

DT (x) = (1c)

pras— —lim ST g
0

b
T(l+a) {T(t)(dt)a Y

Ineq. (1d) A=t — 1, At= max {At,, At,, At ...} and (4, 411,7=0,... N-1,(,=a,ty=
b, is a partition of the interval [a, b]. In order to facilitate the presentation of the solution ap-
proach developed we consider the case of the non-dimension which yields:

0¥T(x,t) T (x,t) _

0 (2a)
Ox ™ ot”
with a fractal boundary condition:
LD (). TO.0=0 (2b)
xa

Local fractional variation iteration method: solution

The non-linear local fractional eq. (2a) reads as a sum of linear L, and non-linear N,
local fractional operators, L, T+ N, T= 0 which allows the following correction functional to be
constructed. We can construct a correction functional as [22]:
124841, T, () + N, T, ()]} A3)

ot

T @) =T,(0)+

Ineq. (3) YN",, is arestricted local fractional variation, while * is a fractal Lagrange mul-
tiplier. The determination of {*require stationary conditions of the functional, that is 647, =0
[5, 22].

Following eq. (3) the local fractional functional becomes [6]:

oxT,  o°T
Ty (X) =T, (x)+ [ | —2 — ——1 4
n+l() n()Ox{§|:ax2a al'a:|} ()
and the stationary condition yield:
S O A e S O LTI AT CY
T=x =X o ! =X
1=@E)@| =0, & =0 )| _ =0 (5b)
Then, the Lagrange multiplier is:

T—X)*
g = {120 (©)

I'l+o)

Hence, the successive interaction formula is:
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Ty () =T, ety 1@ E= ) oD O 1,060 ™
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Assuming an initial approximation 7(x,t) = x*E_(t*)/T'(1 + a), we get:
A 20 o
Ml(x, [)= uo(x, t)+()[t(a) (T t) a TO (X, T) _ a TO(x’ T) —
I'l+a) ox2 ok
1 £ @k+Da
B N(0) Y. (82)
i=ol'[ 452(21;+1)a] pur
a5 ) = 1y (s 10 T T D) SR L
I'l+oa) Ox 2 ot
2 £ Ck+Da
= By (1%)) (8b)
ol [+ 2k +1)a]
Consequently, the local fractional series solution 7" = lim 7, is:
n—yoo
n + @k+Da
T,(x,)=E,(t*)) ———— 9a
n (e 1) ( );;)F(l+(2k+l)a) ©a)
Then we can derive in a compact form:
TG0 =lim| E, ()Y —" | E, (1)sinh, (x*) (o)
x,t)=hm| E, (t* —— | = £, (1*)smh , (x*
n—»oo k=0 F(l + (2k + l)a)
where o o
Sinha(xa)zEa(x )+Ea( X ) (90)
As is known, the temperature field can be written in the form:
|E, (1%) = E, (13| < E, (1]t — 1o < & (10a)
and
|sinha (x*) —sinh,, (x% )|< |cosha (x% )|x —x, <& | (10b)

Hence, the fractal dimensions of both E,(#*) and sinh,(x*) are equal to . It is shown
that the temperature describes transports processes in fractal media.

Conclusions

This paper presents a local fractional iteration method by an example solving local
heat-conduction equation relevant to fractal media. The method is derived on the basis of the lo-
cal fractional calculus [6, 22-24]. It differs from the fractional iteration method [25-29] based on
both fractional and the classical integer calculus [22]. The compact solution developed is effec-
tive and in describing transports in fractal media.
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