THERMAL SCIENCE
International Scientific Journal
FLOW VISUALIZATION AND STUDY OF CHF ENHANCEMENT IN POOL BOILING WITH AL2O3 - WATER NANO-FLUIDS
ABSTRACT
Pool boiling heat transfer characteristics of Al2O3-Water nanofluids is studied experimentally using a NiCr test wire of 36 SWG diameter. The experimental work mainly concentrated on i) change of Critical Heat Flux(CHF) with different volume concentrations of nanofluid ii) flow visualization of pool boiling using a fixed concentration of nanofluid at different heat flux values. The experimental work revealed an increase in CHF value of around 48% and flow visualization helped in studying the pool boiling behaviour of nanofluid. Out of the various reasons which could affect the CHF enhancement, surface roughness plays a major role in pool boiling heat transfer.
KEYWORDS
PAPER SUBMITTED: 2010-05-11
PAPER REVISED: 2011-08-27
PAPER ACCEPTED: 2011-08-31
THERMAL SCIENCE YEAR
2012, VOLUME
16, ISSUE
Issue 2, PAGES [445 - 453]
- S.M. You, J. Kim, and K.H. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Applied Physics Letters. 83 (2003), pp. 3374-3376
- S.Das, N. Putra, and W. Roetzel, Pool boiling characteristics of nanofluids, International Journal Heat and Mass Transfer, 46 (2003), pp. 851-862
- P. Vassallo, R. Kumar, and S.D.Amico, Pool boiling heat transfer experiments in silica-water nanofluids, International Journal of Heat and Mass Transfer, 47 (2004), pp. 407-411
- I. C. Bang and S. H. Chang, Boiling heat transfer performance and phenomena of Al2O3-water nanofluids from a plain surface in a pool, International Journal of Heat and Mass Transfer, 48 (2005), pp. 2407-2419
- Dongsheng Wen, Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF), International journal of Heat and Mass Transfer, 51(2008), pp. 4958-4965
- S.M Kwark, Ratan kumar, Gilberto Moreno, Jaisuk Yoo and Seung M.You, Pool boiling characteristics of low concentration nanofluids, International Journal of Heat and Mass Transfer, 53 (2010) pp.972-981
- Kutateladze, S.S., A hydrodynamic theory of changes in the boiling process under free convection conditions. Izv. Akad. Nauk, USSR, Otd. Tekh. Nauk, 4 (1951), pp. 529-935
- Zuber, N, Hydrodynamic aspects of boiling heat transfer. AEC Rep.AECU, (1959), pp. 4439
- Murshed, S.M.S., Leong, K.C., Yang, C., Enhanced thermal conductivity of TiO2-water based nanofluids. Int. J. Thermal Sci. 44 (2005), pp. 367-373
- Brinkman, H.C., The viscosity of concentrated suspension and solutions. The J. Chem. Phys 20, (1951), pp. 571
- S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, Trans. ASME 125 (2003), pp. 567-574
- S. Lee, U.S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat Transfer 121 (1999), pp. 280-289
- S.K. Das, N. Putra, W. Roetzel, Pool boiling characteristics of nanofluids, Int. J. Heat Mass Transfer 46 (2003), pp. 851-862
- H.C. Brinkman, The Viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20 (1952), pp. 571-581
- J. P. Holman, Experimental methods for engineers, 7th ed., Chap. 3, McGraw-Hill, New York, 2007
- W. Fritz, Berechnung des Maximalvolumens von Dampfblasen, Physik Zeitschr., 369 (1935), pp. 379-384
- S. J. Kim, Study of pool boiling and critical heat flux enhancement in nanofluids, Bulletin of the polish academy of sciences, Technical sciences 55(20), (2007), pp. 211-216
- A.P. Haton, Photographic study of boiling prepared surfaces, 3rd international conference Conference, Heat Transfer Conference, Chicago, Aug., 1966