International Scientific Journal


Nanofluids are colloidal mixtures of nanometric metallic or ceramic particles in a base fluid, such as water, ethylene glycol or oil. Nanofluids possess immense potential to enhance the heat transfer character of the original fluid due to improved thermal transport properties. In this article, a brief overview has been presented to address the unique features of nanofluids, such as their preparation, heat transfer mechanisms, conduction and convection heat transfer enhancement, etc. In addition, the article summarizes the experimental and theoretical work on pool boiling in nanofluids and their applications.
PAPER REVISED: 2012-01-11
PAPER ACCEPTED: 2012-01-16
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2012, VOLUME 16, ISSUE Issue 2, PAGES [423 - 444]
  1. Frank P. Incropera and David P. Dewitt, Fundamentals of Heat and Mass Transfer, Sixth edition, John Wiley and Sons, USA, 2009.
  2. Maxwell .J.C. A treative on electricity and magnetism, Dover publications,1873
  3. Choi, S.U.S, Development and applications of Non-Newtonian flows, vol.66 (Ed. D. A. Singiner and H.P. Wang), ASME, (1995), pp. 99 - 106
  4. Choi,U.S., and Eastman, J.A.Enhancing thermal conductivity of fluids with nanoparticles. International mechanical Engineering congress and exhibition, san Francisco,CA ,1995
  5. Wang, Q.X. Mujumdar, SA.,Heat transfer characteristics of nanofluids: a Review, International Journal of Thermal Sciences, 46 (2007), 1, pp. 1-19.
  6. Yimin Xuan, Qianf Li, Heat Transfer Enhancement of Nano Fluids, International Journal Of Heat and Fluid Flow 21 (2000), pp. 58- 64.
  7. Choi, S.U.S, Enhancing Thermal Conductivity of fluids with Nanoparticles ASME FED, 231 (1995), pp. 99-103.
  8. Choi, S.U.S. Nano fluid technology: current status and future research Korea - U.S. technical conference on strategic technologies,, Vienna, va;1999.c
  9. Choi, S.U.S, Zhang, Z.G., Yu. W, Lockwood F.E and Grulke, E.A.Anomalous thermal conductivity enhancement in nano tube suspensions. Applied physics letters, 79 (2001) , 14, pp. 2252-2254.
  10. Chon. C.H., Kihm. K.P , Lee . S.P, and Choi S.U.S.Empirical correction finding the role of temperature and particle size for nano fluid (Al2O3) thermal conductivity enhancement Applied Physics Letter, 87(2005),15, pp.153107-1531.
  11. Eastman J.A, Choi S.U.S, Li. S, Yu.W and Thompson L.J.Anomalously increased Effective thermal conductivities of ethylene glycol-based nanofluids conducting copper nano particles. Applied Physics Letters. 78(2001), 6, pp. 718-720.
  12. Eastman. J.A., Philpot. S.R., Choi .s. u. s and Keblinski. P.Thermal transport in fluids Annual review of material research, 34 (2004), 1, pp. 219-246.
  13. Xuan.Y and Li .Q Investigation on convective heat transfer and flow features of nano fluids. Journal of heat transfer, 125 (2003), 1, pp. 151-155.
  14. Bourlinos.A, Giannelis.E , Zhang .Q. Archer.l, Floudas .G and Fytas.G Surface functionalized nano particles with liquid-like behavior: the role of the constituents components the European physical journal e- soft matter,2006; 20(1): 109-117.
  15. Chein,R and Haung. G, Analysis of micro channel heat sink performance using nanofluids. Applied Thermal Engineering, 25 (2006), 17, pp. 3104-3114.
  16. Etemad. G. heris, S.Z and Tsfanhany, M.N Experimental investigation of oxide nano fluids laminar flow convective heat transfer. International communications in heat and mass transfer, 33 (2006), 4, pp. 529-535.
  17. Kim.J, Kan .T. and Choi .C.K.Analysis of convective instability and heat transfer characteristics of nano fluids. Physics of fluids, 16 (2004), 7, pp. 2395-2401.
  18. Said.M.A.M and Agarwal. R. k. Numerical simulation of natural convection heat transfer in nano fluids. 38th AIAA thermo physics conference, Toronto, Ontario, Canada, (2005), pp. 1-14.
  19. Das.S.K., Putra. N., Thiesen.P and Roetzel.W, Temperature dependence of thermal Conductivity enhancement for nano fluids. Transactions of the ASME Journal of Heat Transfer, 125 (2003), 4, pp. 567-574.
  20. Yang. B. and Han. Z. H. Temperature dependent thermal conductivity of nano rod based nano fluids Applied Physics Letters, 89(2006), 8, and 083111.
  21. Das. S.K. Putra.N and Roetzel .W. Pool Boiling Characteristics of Nano fluids. International Journal of Heat and Mass transfer, 46 (2003), 5, pp. 851-862.
  22. Wen. D and Ding.Y.Experimental Investigation into the Pool Boiling Heat Transfer of Aqueous based alumina nanofluids. Journal of Nanoparticle Research, 7 (2004), 2, pp. 265- 274.
  23. You.S.M, Kim.J.H and K. M. K. H,Effect of nano particles on critical heat flux of water in pool boiling heat transfer. Applied Physics Letters, 83(2003), 16, pp. 3374-3376.
  24. Lee.S,Choi.S.U.S,Li.S and Eastman.J.A.Measuring thermal conductivity of fluids Containing Oxide nanoparticles Transaction of ASME, Journal of Heat Transfer, 121(1999), pp. 280 - 289.
  25. Keblinst.P, Eastman.J.A and Cahill.D.G,Nano fluids for Thermal Transport Materials Today, 8 (2005), 6, pp. 36-44.
  26. Keblinst.P, Phillpot.S.R, Choi.S.U.S, and Eastman.J.A,Mechanism of heat flow in suspension nanosized particals (nano fluid)International Journal of Heat and Mass Transfer, 45(2002), 4, pp. 855-863.
  27. S.P.Jang, S.U.S.Choi, Effect of various parameters on nanofluid thermal conductivity, Journal of Heat Transfer, 129(2007), pp. 617-623.
  28. Eastman.J.A, Cho.S.U.S, Li.S and Thompson.L.J,Enhanced thermal conductivity through the development of nanofluids,Proc Symp on nanocomposite materials II,Material Research Society, Boston, 457 (1997), pp. 3 - 11.
  29. Eastman.J.A,Cho.S.U.S,Li.S and Thompson.L.J, and Dimelfi.R.J,Thermal properties of Nano structured materials, Journal of Metastable Nano Crystalline Materials, 2 (1998), pp. 629 - 637.
  30. Eastman.J.A,Cho.S.U.S,Li.S,Thompson.L.J,and Lee.S, Enhanced thermal conductivity through the development of Nanofluids, Fall meeting of the Materials Research Society,Boston, USA,1997.
  31. Tran.P.X and Soong.Y, Preparation of nanofluids using laser ablation in liquid technique, ASME Applied Mechanics and Material Conference, Austin, TX - 2007.
  32. Patel.H.E, Das.S.K, Sundarrajan.T,Sreekumaran Nair.A,George.B and Pradeep.T, Thermal conductivities of naked and manolayer protected metal nanoparticle based Nanofluids, Manifestation of anomalous enhancement and chemical effects, Applied Physics Letters, 83 (2003), 14, pp. 2931 - 2933.
  33. Zhu.H,Lin.Y and Yin.Y, A novel one step chemical method for preparation of copper Nanofluids, Journal of Colloid and Interface Science, 277 (2004), 1, pp. 100 - 103.
  34. Masuda.H,Ebata.A, Teramae.K and Hishinuma.N,Alteration of thermal conductivity and Viscosity of liquid by dispersing ultra fine particles, Netsu Bussei, 7 (1993), pp. 227 - 233.
  35. Wang.X,Xu.X and Choi.S.U.S, Thermal conductivity nanoparticles - Fluid mixure Journal of Thermophysics and Heat Transfer, 13 (1999), 4, pp. 474 - 480.
  36. Lee.S,Choi.S.U.S and Eastman.J.A Measuring Thermal conductivity fluids containing Oxide nanoparticles, Transactions of ASME Journal of heat transfer, 121 (1999), 2, pp. 280 - 289.
  37. Wang.X,Xu.X, Zhou.L.P, Peng.X.F and Zhang.X.X, Enhancing the effective thermal Conductivity of liquid with dilute suspensions of Nanoparticles Symposium on Thermo Physical Properties, Boulder, USA 2003.
  38. Murshed.S.M.S,Leong.K.C and Yang.C, Enhanced thermal conductivity of TiO2 - Water based nanofluids, International Journal of Thermal Sciences, 44 (2005), 4, pp. 367 - 373.
  39. Pak.B.C and Cho.Y.I, Hydrodynamics and heat transfer study of dispersed fluids with Submicron metallic Oxide particles, Experimental Heat Transfer, 11 (1998), 2, pp. 151 - 170.
  40. Xuan.Y and Li.Q,Heat transfer enhancement of nanofluids International Journal of Heat and Fluid flow, 21 (2000), 1, pp. 58 - 64.
  41. R.S.Vajjha, D.K.Das, Measurement of Thermal Conductivity of Al2O3 Nanofluid and Development of a New Correlation, T.Marbach(Ed.), Procedings of 40Th Heat Transfer and Fluid Mechanics Institute, S acramento.CA, (2000), pp. 14.
  42. Hong.K.S,Hong.T.K and Yang.H.S, Thermal conductivity of Fe Nanofluids depending on the cluster size of nanoparticles, Applied Physics Letters, 88 (2006), 3, pp. 319 - 311.
  43. Hong.K.S,Choi.C.J and Yang.H.S, Study of the enhanced thermal conductivity of Fe Nanofluids, Journal of applied Physics Letters, 97 (2005), 6, pp. 643 - 641.
  44. Berber.S, Kwon. K. and David. T. Unusually high thermal conductivity of carbon nano tubes Physical Review Letters, 84 (2000), 20, pp. 4613 - 4616.
  45. Che. J, Cagin.T and Goddard III, W.A Thermal conductivity of nanotubes Nanotechnology, 2 (2000), pp. 65-69.
  46. Ruoff. R.S. and Lorents D.C. Mechanical and thermal properties of carbon nanotubes Carbon nanotubes, 33 (1995), 7, pp. 925 - 930.
  47. Beircuk .M.J., Llaoguno.m.C, Radosavijevic .M, Hyun.J.K, Jhonson. A.T and Fischer. J. E. Carbon nanotube composites for thermal management Applied Physics Letters, 80 (2002), 15, pp. 2767- 2769.
  48. Xie. H, Wang .J, Xi. T.and liu.Y.Thermal conductivity of suspensions containing nano sized SiC particles International Journal of Thermophysics, 23 (2002), 2, pp. 571-580.
  49. Xie, H. WangJ; xi T.; liu Y.; Ai,F; Wu.Q Thermal conductivity enhancement of Suspensions containing nanosized alumina particles Journal of Applied Physics,91 (2002), 7, pp. 4568-4572.
  50. Prasher R, Phelan.P.E and Bhaltacharya.P Effect of aggregation kinetics on the thermal Conductivity of nanoscale colloidal solutions (Nanofluids) Nanoletters, 6 (2005), 7, pp. 1529 - 1534.
  51. Li. C.H and Peterson G.P Experimental Investigation of Temperature and Volume Fraction variations on the effective thermal conductivity of nanoparticle suspensions, Journal of Applied Physics, 99 (2006), 8, pp. 284-314.
  52. Kumar.D.H, Patel.H.E, Kumar V.R.R, Sundararajan.T., Pradeep.T and Das.S.K Model for heat conduction in nanofluids Physics Review Letters, 93 (2004), 14, 144301.
  53. Krishnamuthy.S, Bhattacharaya.P, Phelen P.E and Prasher.R.S Enhanced Mass Transport in Nanofluids Nano Letters, 6 (2006), 3, pp. 419-423.
  54. Liu.M.S, Lin.C.C, Haung.I.T and Wang C.C, Enhancement of Thermal Conductivity with CuO for Nanofluids, Chemical Engineering and Technology, 29 (2006), 1, pp. 72- 77.
  55. Xie.H, Lee.H, Youn.W and Choi.M, Nanofluids containing multiwalled carbon Nanotubes and their enhanced thermal conductivies Journal of Applied Physics, 94 (2003), 8, pp. 4967-497.
  56. Wen, D.S and Ding. Y.L, Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotube Nanofluids) Journal of Thermo physics and Heat Transfer, 18 (2004), 4, pp. 481- 485.
  57. Yang.B and Han.Z.H, Temperature- dependent thermal conductivity of nanorod-based Nanofluids. Applied Physics Letters, 89 (2006), 8, 083111.
  58. Assael.M.J, Chen.C.F, Metaxa.I and Wakeman.W.A, Thermal conductivity of Suspensions carbon Nanotubes in Water International Journal of Thermophysics, 25 (2004), 4, pp. 971-985.
  59. Assael.M.J,Metaxa.I, Aravanitidis.J, Christofios.D and Lioutas.C, Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double Walled Nanotubes in the presence of Two different Dispersants, International Journal of Thermo Physics, 26 (2005), 3, pp. 647- 664.
  60. Liu. M.S, Lin.C.C, Huang.I.T and Wand.C.C,Enhancement of thermal conductivity with Carbon nanotube for nanofluids, International Communications in Heat and Mass Transfer, 32 (2005), 9, pp. 1202-1210.
  61. Honorine Angue Mintsa, Gilles Roy, Cong Tam Nguyen, Dominique Doucet, New Temperature Dependent Thermal Conductivity Data for Water based Nanofluid', International journal of Thermal Sciences, 48(2009), pp. 363-371.
  62. Ding.Y, Alias.H,Wen.D and Williams. R.A.,'Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids), International journal of Heat and Mass Transfer, 88 (2006), Paper 031901, 3 pp.
  63. Wenhua. Yu, David m. France, Jules .L. Routbort, and Stephen U.S.Choi, Review And Comparison of Nanofluids Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Engineering, 29 (2008), 5, pp. 432-460.
  64. Xuan .Y, Li Q. Investigation On Convective Heat Transfer And Flow Features Of Nanofluids ASME Journal of Heat Transfer, 125(2003), pp. 151-155.
  65. Li Q., Xuan .Y, Convective Heat Transfer and Flow Characteristics of Cu- Water Nanofluid, Science in China (series E), 45 (2005), 4, pp. 408- 416.
  66. S.Zeinali Heris, S.G. Etemad, M. Nasir. Esfahany, Experimental Investigation of Oxide Nanofluids Laminar Flow Convection Heat Transfer, International Journal of Heat and Mass Transfer, 33 (2006), pp. 529-535.
  67. Wen D and Ding Y Experimental Investigation In to Convective Heat Transfer Of Nanofluids at the Entrance Region under Laminar Flow Conditions, International Journal of Heat & Mass Transfer, 47 (2004), pp. 5185-5188.
  68. Yang Y, Zhang Z.G, Grulke E.A, Anderson WB, Wu.G,Heat Transfer Properties of Nanoparticle-In-Fluid Dispersions (Nanofluids) In Laminar Flow International Journal of Heat & Mass Transfer, 48 (2005), 6, pp. 1107-1116.
  69. Khanafer . K, Vatai. K and Lightstone. M Buoyancy Driven Heat Transfer Enhancement in a Two Dimensional Enclosure Utilizing Nanofluids, International Journal of Heat & Mass Transfer, 46 (2003), pp. 3639-3653.
  70. Kim.J, Kang Y.T and Choi.C.K, Analysis of Convective Instability and Heat Transfer Characteristics of Nanofluids, Physics of Fluids, 16 (2006), 7, pp. 2395-2401.
  71. Ulzie Rea, Tom Mckrell, Lin-Wen Hu, Jacop Buongiorno, Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina-Water Nanofluids, International Journal of Heat & Mass Transfer, 52(2009), pp. 2042-2048.
  72. Iulian Gherasim, Gills Roy, Cong Tam Nguyen, Dinh Vo-Ngoc, Experimental Investigation of Nanofluids in Confined Laminar Radial Flows, International journal of Thermal Science, 48 (2009), pp. 1486-1493.
  73. Shuichi Torii, Turbulent Heat Transfer Behavior of Nanofluid In a Circular Tube Heater Under Constant Heat Flux, Advance in Mechanical Engineering, Vol.2010, article ID 917612, 7 pages.
  74. You .S.M. Kim J.H and Kim K.M, Effect of Nanoparticles on the Critical Heat Flux Of Water in Pool Boiling Of Heat Transfer Applied Physics Letters, 83 (2003), pp. 3374-3376.
  75. Vassallo .P, Kumar .R and D'Amico.S, Pool Boiling Heat Transfer Experiments in Silica Water Nano Fluids, International Journal of Heat and Mass Transfer, 47 (2004), 2, pp. 407-411.
  76. Bang I C and Chang .S.H, Boiling Heat Transfer Performance and Phenomena of Al2 O3 Water Nanofluids from a Plain Surface in a Pool, International Journal of Heat And Mass Transfer, 48 (2005), pp. 2407-2419.
  77. Bang I C and Chang, S.H, Direct Observation of a Liquid Film under a Vapour Environment in a Pool Boiling Using a Nanofluid, Applied Physics Letters, (2005), 13, pp. 134107-1-3. 30
  78. D.H.Yoo,K.Hong,Y.Ho.soon, Study of Thermal Conductivity of nanofluids for the application of heat transfer fluids, Thermochimica Acta, 455(2007), pp. 66-69.
  79. Tzeng.S, Lin.C and Huang.k, Heat Transfer Enhancement of Nano Fluids in Rotary Balde Coupling of Four Wheel Drive Vehicles, Acta Mechanica, 2005; 179(1): 11-23.
  80. Tsai, C. Y., Chien, H. T., Ding, P. P., Chan, B., Luh, T. Y., and Chen, P. H., Effect of Structural Character of Gold Nanoparticles in Nanofluid on Heat Pipe Thermal Performance, Materials Letters, 2004; vol. 58: pp. 1461-1465.
  81. Kang .S.W, W.C. Wei , S.H Tsai and S.Y.Yang, Experimental Investigation Of Silver Nano Fluid on Heat Pipe Thermal Performance, Applied Thermal Engineering, 26, pp. 2377-2382.
  82. Wei .S.W, S.H Tsai, S.Y.Yang, S.W.Kang, Effect of Nano Fluid Concentration on Heat Pipe Thermal Performance, IASME Trans, 2 (2005), pp. 1432-1439.
  83. Ma.H.B, Wilson.C, Borgmeyer.B, Park.K, Yu.Q, Choi.S.U.S and Tirumala.M, Effect Of Nano Fluid on the Heat Transport Capability in An Oscillating Heat Pipe, Applied Physics Letters, 88, 14, 143116.
  84. Jordan, A., Scholz, R., Wust, P., Fahling, H., and Felix, R., Magnetic Fluid Hyperthermia (MFH): Cancer Treatment with AC Magnetic Field Induced Excitation of Biocompatible Super paramagnetic Nanoparticles, Journal of Magnetism and Magnetic Materials, 201(1999), pp. 413-419.
  85. Wen, D., and Ding, Y., Formulation of Nanofluids for Natural Convective Heat Transfer Applications, International Journal of Heat and Fluid Flow, 26 (2005), pp. 855-864.
  86. Hwang,Y., Park, H. S., Lee, J. K., and Jung,W. H., Thermal Conductivity and Lubrication Characteristics of Nanofluids, Current Applied Physics, 6S1 (2006), pp. e67- e71.
  87. Lee, D., Kim, J.-W., and Kim, B. G., A New Parameter to Control Heat Transport in Nanofluids: Surface Charge State of the Particle in Suspension, Journal of Physical Chemistry B, 110 (2006), pp. 4323-4328.
  88. Chopkar, M., Das, P. K., and Manna, I., Synthesis and Characterization of a Nanofluid for Advanced Heat Transfer Applications, Scripta Materialia, 55 (2006), pp. 549-552.
  89. Das, S. K., Putra, N., and Roetzel,W., Pool Boiling of Nano-Fluids on Horizontal Narrow Tubes, International Journal of Multiphase Flow, 29(2003), pp. 1237-1247.
  90. Wen, D., and Ding, Y., Experimental Investigation into the Pool Boiling Heat Transfer of Aqueous Based γ-Alumina Nanofluids, Journal of Nanoparticle Research, 7 (2005), pp. 265- 274.
  91. Liu, Z.-H., and Qiu, Y.-H., Boiling Heat Transfer Characteristics of Nanofluids Jet Impingement on a Plate Surface, Heat and Mass Transfer, 43 (2007), pp. 699-706.
  92. Wehua Yu, David M. France, Jules I. Routbort and Stephan U.S. Choi, Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Engineering, 29 (2008), 5, pp. 432-460.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence