International Scientific Journal


The optimization in the simulation time of non-isothermal filling process without losing effectiveness remains a challenge in the resin transfer moulding process simulation. We are interested in this work on developing an improved computational approach based on finite element method coupled with control volume approach. Simulations can predict the position of the front of resin flow, pressure and temperature distribution at each time step. Our optimization approach is first based on the modification of conventional control volume/finite element method, then on the adaptation of the iterative algorithm of conjugate gradient to Compressed Sparse Row (CSR) storage scheme. The approach has been validated by comparison with available results. The proposed method yielded smoother flow fronts and reduced the error in the pressure and temperature pattern that plagued the conventional fixed grid methods. The solution accuracy was considerably higher than that of the conventional method since we could proceed in the mesh refinement without a significant increase in the computation time. Various thermal engineering situations can be simulated by using the developed code.
PAPER REVISED: 2011-01-23
PAPER ACCEPTED: 2011-02-24
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2011, VOLUME 15, ISSUE Supplement 2, PAGES [S275 - S289]
  1. Doppler, F., The use of composite materials in an aerospace manufacturing company. Implementation of a prevention plan. Actes du VIIIe symposium sur la santé au travail dans la production des fibres artificielles organiques. INRS éd 1322, (1990), pp. 27-33.
  2. Owen, M.J., Rudd, C.D., Middleton, V., Kendall, K.N., Revill, I.D., Resin transfer molding (RTM) for automotive components. Composite Material Technology ASME, 37: (1991), pp.177-183.
  3. Abbassi, A., Shahnazari, M. R., Numerical modeling of mould filling and curing in non-isothermal RTM process, Applied Thermal Engineering, (2004), pp 1-13.
  4. Choi, M. A., Lee, M. H., Lee, S. J., Numerical studies during cure in the resin transfer molding, Korea polymer journal, volume, 6 (1998), 3, pp: 211-218. 15
  5. Guo, Z. S., Du, S., Zhang, B., Temperature distribution of thick thermoset composites, Modelling and simulation in materials science and engineering, 12 (2004), pp, 443-452.
  6. Lam, P. W. K., Plaumann, H. P., Tran, T., An Improved Kinetic Model for the Autocatalytic Curing of Styrene-Based Thermoset Resins. J. Appl. Poly., 41 (1990), pp. 3043-3057.
  7. Tuncol, G., Danisman, M., Kaynar, A., Sozer, E. M., Constraints on monitoring resin flow in the resin transfer molding (RTM) process by using thermocouple sensors, Composites: Part A: Applid sciences and manufacturing, 38 (2007), pp. 1363-1386.
  8. Crank Crank J., Free and moving boundary problems, Clarendon Press Oxford, 1988.
  9. Bennon Bennon W.D., Incropera F.P., A continuum model for momentum, heat and species transport in binary solidliquid phase change systems. 1. Model formulation, Int. J. Heat Mass Tran. 10 (1987) 2161-2170.
  10. Zhang Y., Alexander J.I.D., Ouazzani J., A Chebychev collocation method for moving boundaries heat transfer and convection during directional solidification, Int. J. Numer. Meth. Heat Fluid Flow 4 (1994) 115-129.
  11. Voller V.R., Prakash C., A fixed grid numerical modelling methodology for convection diffusion mushy region phase change problems, Int. J Heat Mass Tran. 8 (1987) 1709-1719.
  12. El Ganaoui, M., Lamazouade, A,. Bontoux, P., Morvan, D., Computational solution for fluid flow under solid/liquid phase change conditions, Int. Journal of Computers and Fluids, 31 (2002), 7, pp. 539-556.
  13. Trochu, F., Gauvin, R., Limitations of a Boundary-Fitted Finite Difference Method for the Simulation of the Resin Transfer Molding Process, Journal of Reinforced Plastics and Composites, 11 (1992) 7, pp. 772-786.
  14. Hattabi, M., Snaike, I., Echaabi, J., Bensalah, M. O., Simulation of flow front in liquid composite moulding (in French langage), Comptes Rendus Mécanique, 333 (2005), 7, pp 585-591.
  15. Yoo, Y.E., Lee, W.I., Numerical simulation of the resin transfer mould filling process using the boundary element method. Polymer Composites, 17 (1996), pp. 368-374.
  16. Chang, C. Y., Numerical simulation on the void distribution in the fiber mats during the filling stage of RTM, Journal of reinforced plastics and composites, 22 (2003), 16, pp. 1437-1454.
  17. El Ganaoui, El Ganaoui M., Bontoux P., Morvan D., - Localisation d'un front de solidification en interaction avec un bain fondu instationnaire. - C. R. Acad. Sci. Paris, série IIb, t. 327, p. 41-48, 1999.
  18. Shojaeia, A., Ghaffariana, S.R., Karimianb, S. M. H, Numerical Simulation of Three-Dimensional Mold Filling in Resin Transfer Molding, Journal of reinforced plastics and composite, 22 (2003), pp. 1497-1529.
  19. Yu, B., Chiu, H. T., Ding Z., Lee, L. J., Analysis of flow and heat in liquid composite molding, intern Polymer Processing XV 2000.
  20. Olivier Soyez, Etude d'un solveur parallèle pour la simulation de la houle, Mémoire Diplôme d'Etudes Approfondies, Informatique Parallèle et Répartie, Combinatoire, Université de Picardie - Jules Verne, 2002.
  21. Tsuruta, S., Misztal, I., Stranden, I., Use of the preconditioned conjugate gradient algorithm as a generic solver for mixed-model equations in animal breeding applications Journal of animal science, 79(2001), pp. 1166-1172.
  22. Cai, Z., Simplified mould filling simulation in resin transfer moulding, Journal of Composite Materials, 26 (1992), pp. 2606-2629.
  23. Samir, J., Hattabi, M., Echaabi, J., Saouab, A., Park, C. H., Simulation of mould filling in RTM process by the control volume/finite element method (in french langage), Africain revue in the research of informatics and applied mathematics, 10 (2009), pp. 1-15.
  24. Nearing, J., Partial Differential Equations, in Mathematical Tools for Physics, University of Miami 2003, pp 327:330.
  25. Shojaei, A., Ghaffarian, S.R., Karimian, S.M.H., Simulation of the three-dimensional non-isothermal mould filling process in resin transfer molding, Composites Science and Technology, 63 (2003), pp.1931-1948.
  26. Chen, B. Leng, A.H.D., T.W. Chou, A non linear compaction model for fibrous performs, Composites Part A: Applied Science and Manufacturing, 32 (2001), 5, pp. 701-707.
  27. Thansekhar, M.R., Mahesh, B., I., Chandra, S., A., Free convection in a vertical cylindrical annulus filled with anisotropic porous medium, Thermal science: 13 (2009), 1, pp. 37-45.

© 2023 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence