THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

EFFECT OF THERMOPHORESIS ON NATURAL CONVECTION BOUNDARY LAYER FLOW OF A MICROPOLAR FLUID

ABSTRACT
The present investigation deals with obtain the solution natural convection boundary layer flow of a micropolar fluid with thermophoresis. The similarity method is used to obtain solution for the governing equation. Four different cases of flows have been studied namely a vertical isothermal surface, vertical surface with uniform heat flux, a plane plume and flow generated from a horizontal surface. Numerical computations are carried out for the non-dimensional physical parameter. The results are analyzed for the effect of different physical parameters such as thermophoresis, Prandtl number, microrotation parameter, buoyancy parameter and Shmidt number of the fluid.
KEYWORDS
PAPER SUBMITTED: 2009-01-01
PAPER REVISED: 2009-04-06
PAPER ACCEPTED: 2009-04-12
DOI REFERENCE: https://doi.org/10.2298/TSCI1001171B
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2010, VOLUME 14, ISSUE Issue 1, PAGES [171 - 181]
REFERENCES
  1. Erigen, A. C., Theory of Micropolar Fluids, Journal of Mathematics and Mechanics, 16 (1966), 1, pp. 1-18
  2. Erigen, A. C., Theory of Thermomicropolar Fluids, Journal of Mathematical Analysis and Application, 38 (1972), 2, pp. 480-496
  3. Goldsmith, P., May, F. G., Diffusiophoresis and Thermophoresis in Water Vapour Systems, in: Aerosol Science (Ed. C. N. Davies), Academic Press, London, 1966, pp. 163-194
  4. Talbot, L., et al., Thermophoresis of Particles in a Heated Boundary Layer, J. Fluid Mech., 101 (1980), 4, pp. 737-758
  5. Brock, J. R., On the Theory of Thermal Forces Acting on Aerosol Particles, J. Colloid Sci., 17 (1962), 8, pp. 768-770
  6. Hales, J. M., Schwendiman, L. C., Horst, T. W., Aerosol Transport in a Naturally-Converted Boundary Layer, Inter. J. Heat Mass Transfer, 15 (1972), 10, pp. 1837-1849
  7. Goren, S. L., Thermophoresis of Aerosol Particles in the Laminar Boundary Layer on a Flat Plate, J. Colloid Interface Sci., 61 (1977), 1, pp. 77-85
  8. Epstein, M., Hauser, G. M., Henry, R. E., Thermophoretic Deposition of Particles in Natural Convection Flow from a Vertical Plate, J. Heat Transfer, 107 (1985), 2, pp. 272-276
  9. Mills, A. F., Hang, X., Ayazi, F., The Effect of Wall Suction and Thermophoresis on Aerosol-Particle Deposition from a Laminar Boundary Layer on a Flat-Plate, I. J. Heat Mass Transfer, 27 (1984), 7, pp. 1110-1113
  10. Tsai, R., A Simple Approach for Evaluating the Effect of Wall Suction and Thermophoresis on Aerosol Particle Deposition from a Laminar Flow over a Flat Plate, I. Com. Heat Mass Transfer, 26 (1999), 2, pp. 249-257
  11. Jia, G., Cipolla, J. W., Yener, Y., Thermophoresis of a Radiating Aerosol in Laminar Boundary-Layer Flow, J. Thermophys. Heat Transfer, 6 (1992), 3, pp. 476-482
  12. Jayaraj, S., Finite Difference Modelling of Natural Convection Flow with Thermophoresis, Internet. J. Numer. Methods Heat Fluid Flow, 9 (1999), 6, pp. 692-704
  13. Jayaraj, S., Dinesh, K. K., Pillai, K. L., Thermophoresis in Natural Convection with Variable Properties, Heat Mass Transfer, 34 (1999), 6, pp. 469-475
  14. Chiou, M. C., Effect of Thermophoresis on Sub-Micron Particle Deposition from a Forced Laminar Boundary Layer Flow on to an Isothermal Moving Plate, Acta Mech., 129 (1998), 3-4, pp. 219-229
  15. Chiou, M. C., Cleaver, J. W., Effect of Thermophoresis on Sub-Micron Particle Deposition from a Laminar Forced Convection Boundary Layer Flow on to an Isothermal Cylinder, J. Aerosol. Sci., 27 (1996), 8, pp. 1155-1167
  16. Selim, C. A., Hossaina, M. A., Rees, D. A. S., The Effect of Surface Mass Transfer on Mixed Convection Flow Past a Heated Vertical Flat Permeable Plate with Thermophoresis, International J. Thermal Science, 42 (2003), 10, pp. 973-982
  17. Chamkha, A. J., Pop, I., Effect of Thermophoresis Particle Deposition in Free Convection Boundary Layer from a Vertical Flate Plate Embedded in a Porous Medium, Inter. Comm. Heat mass Transfer, 31 (2004), 3, pp. 421-430
  18. Gorla, R. S. R., Lin, P., Yang, A., Asymptotic Boundary Layer Solution for Mixed Convection from a Vertical Surface in a Micropolar Fluid, I. J. of E. S., 28 (1990), 6, pp. 525-533
  19. Gorla, R. S. R., Mixed Convection in a Micropolar Fluid from a Vertical Surface with Uniform Heat Flux, I. J. of E. S., 30 (1992), 3, pp. 349-358
  20. Hassanien, I. A., Bakier, A. Y., Gorla, R. S. R., Natural Convection Boundary Layer Flow of a Micropolar Fluid Long a Vertical Plate in a Thermally Stratified Medium, Appl. Mech. Eng., 1 (1996), 3, pp. 381-395
  21. Hassanien, I. A., Bakier, A. Y., Gorla, R. S. R., Natural Convection Boundary Layer Flow of a Micropolar Fluid, ZAMMZ. Angew. Math. Mech., 77 (1997), 10, pp. 751-755
  22. Nadeem, S., Awais, M., Thin Film Flow of an unsteady Shrinking Sheet through Porous Medium with Variable Viscosity, Physics Letters, A 372 (2008), 30, pp. 4965-4972
  23. Bataller, R. C., Effects of Heat Source/Sink, Radiation and Work Done by Deformation on Flow and Heat Transfer of a Viscoelastic Fluid over a Stretching Sheet, Computers and Mathematics with Applications, 53 (2007), 2, pp. 305-316
  24. Hassanien, I. A., Hamad, M. A., Group Theoretic Method for Unsteady Free Convection Flow of a Micropolar Fluid Along a Vertical Plate in a Thermally Stratified Medium, Applied Mathematical Modelling, 32 ( 2008), 6, pp.1099-1114
  25. Batchelor, G. K., Sheen, C., Thermophoretic Deposition of Particles in Gas Flowing over Cold Surfaces, J. Colloid Interface Sci., 107 (1985), 1, pp. 21-37

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence