THERMAL SCIENCE
International Scientific Journal
MAXIMUM WORK OUTPUT OF MULTISTAGE CONTINUOUS CARNOT HEAT ENGINE SYSTEM WITH FINITE RESERVOIRS OF THERMAL CAPACITY AND RADIATION BETWEEN HEAT SOURCE AND WORKING FLUID
ABSTRACT
Optimal temperature profile for maximum work output of multistage continuous Carnot heat engine system with two reservoirs of finite thermal capacity is determined. The heat transfer between heat source and the working fluid obeys radiation law and the heat transfer between heat sink and the working fluid obeys linear law. The solution is obtained by using optimal control theory and pseudo-Newtonian heat transfer model. It is shown that the temperature of driven fluid monotonically decreases with respect to flow velocity and process duration. The maximum work is obtained. The obtained results are compared with those obtained with infinite low temperature heat sink.
KEYWORDS
PAPER SUBMITTED: 2008-11-09
PAPER REVISED: 2009-04-14
PAPER ACCEPTED: 2009-04-30
THERMAL SCIENCE YEAR
2010, VOLUME
14, ISSUE
Issue 1, PAGES [1 - 9]
- Curzon, F. L., Ahlborn, B., Efficiency of a Carnot Engine at Maximum Power Output, Am. J. Phys., 43 (1975), 1, pp. 22-24
- Andresen, B., et al., Thermodynamics for Processes in Finite Time, Acc. Chem. Res., 17 (1984), 8, pp. 266-271
- Sieniutycz, S., Salamon, P., Advances in Thermodynamics, Volume 4: Finite Time Thermodynamics and Thermoeconomics,Taylor & Francis, New York, USA, 1990
- Sieniutycz, S., Shiner, J. S., Thermodynamics of Irreversible Processes and Its Relation to Chemical Engineering: Second Law Analyses and Finite Time Thermodynamics, J. Non-Equilib. Thermodyn., 19 (1994), 4, pp. 303-348
- Radcenco, V., Generalized Thermodynamics, Editura Techica, Bucharest, Rumania, 1994
- Bejan, A., Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite Time Processes, J. Appl. Phys., 79 (1996), 3, pp. 1191-1218
- Berry, R. S., et al., Thermodynamic Optimization of Finite Time Processes, John Wiley and Sons, Chichester, UK, 1999
- Chen, L., Wu, C., Sun, F., Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems, J. Non-Equilib. Thermodyn, 24 (1999), 4, pp. 327-359
- Sieniutycz, S., Vos, A. de, Thermodynamics of Energy Conversion and Transport, Springer-Verlag, New York, USA, 2000
- Sieniutycz, S., Hamilton-Jacobi-Bellman Framework for Optimal Control in Multistage Energy Systems, Physics Reports, 326 (2000), 4, pp.165-285
- Sieniutycz, S., Thermodynamic Limits on Production or Consumption of Mechanical Energy in Practical and Industry Systems, Progress Energy & Combustion Science, 29 (2003), 3, pp. 193-246
- Chen, L., Sun, F., Advances in Finite Time Thermodynamics: Analysis and Optimization, Nova Science Publishers, New York, USA, 2004
- Sieniutycz, S., Farkas, H., Variational and Extremum Principles in Macroscopic Systems, Elsevier Science Publishers, London, UK, 2005
- Radcenco, V., et al., New Approach to Thermal Power Plants Operation Regimes Maximum Power versus Maximum Efficiency, Int. J. Thermal Sciences, 46 (2007), 12, pp. 1259-1266
- Rubin, M. H., Optimal Configuration of a Class of Irreversible Heat Engines, I. Phys. Rev. A., 19 (1979), 3, pp. 1272-1276
- Rubin, M. H., Optimal Configuration of an Irreversible Heat Engine with Fixed Compression Ratio, Phys. Rev. A., 22 (1980), 4, pp. 1741-1752
- Badescu, V., Optimal Paths for Minimizing Lost Available Work during Usual Heat Transfer Process, J. Non-Equilib. Thermodyn., 29 (2004), 1, pp. 53-73
- Amelkin, S. A., Andresen, B., Burzler, J. M., Maximum Power Process for Multi-Source Endoreversible Heat Engines, J. Phys. D: Appl Phys., 37 (2004), 9, pp. 1400-1404
- Amelkin, S. A., Andresen, B., Burzler, J. M., Thermo-Mechanical Systems with Several Heat Reservoirs: Maximum Power Processes, J. Non-Equilib. Thermodyn., 30 (2005), 1, pp. 67-80
- Song, H., et al., Optimal Configuration of a Class of Endoreversible Heat Engines with Linear Phenomenological Heat Transfer Law, J. Appl. Phys., 100 (2006), 12, 124907
- Song, H., Chen, L., Sun, F., Endoreversible Heat Engines for Maximum Power Output with Fixed Duration and Radiative Heat-Transfer Law, Appl. Energy, 84 (2007), 4, pp. 374-388
- Sieniutycz, S., Spakovsky, M. von, Finite Time Extension of Thermal Exergy, Energy & Conversion Management, 39 (1998), 14, pp. 1423-1447
- Sieniutycz, S., Nonlinear Thermodynamics of Maximum Work Finite Time, Int. J. Engng. Sci., 36 (1998), 5/6, pp. 577-597
- Sieniutycz, S., Kuran, P., Modeling Thermal Behavior and Work Flux in Finite Rate Systems with Radiation, Int. J. Heat Mass Transfer, 49 (2006), 17/18, pp. 3264-3283
- Kuran, P., Nonlinear Models of Production of Mechanical Energy in Non-ideal Generators Driven by Thermal or Solar Energy, Ph. D. thesis, Warsaw University of Technology, Warsaw, 2006