THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

MAXIMUM WORK OUTPUT OF MULTISTAGE CONTINUOUS CARNOT HEAT ENGINE SYSTEM WITH FINITE RESERVOIRS OF THERMAL CAPACITY AND RADIATION BETWEEN HEAT SOURCE AND WORKING FLUID

ABSTRACT
Optimal temperature profile for maximum work output of multistage continuous Carnot heat engine system with two reservoirs of finite thermal capacity is determined. The heat transfer between heat source and the working fluid obeys radiation law and the heat transfer between heat sink and the working fluid obeys linear law. The solution is obtained by using optimal control theory and pseudo-Newtonian heat transfer model. It is shown that the temperature of driven fluid monotonically decreases with respect to flow velocity and process duration. The maximum work is obtained. The obtained results are compared with those obtained with infinite low temperature heat sink.
KEYWORDS
PAPER SUBMITTED: 2008-11-09
PAPER REVISED: 2009-04-14
PAPER ACCEPTED: 2009-04-30
DOI REFERENCE: https://doi.org/10.2298/TSCI1001001L
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2010, VOLUME 14, ISSUE Issue 1, PAGES [1 - 9]
REFERENCES
  1. Curzon, F. L., Ahlborn, B., Efficiency of a Carnot Engine at Maximum Power Output, Am. J. Phys., 43 (1975), 1, pp. 22-24
  2. Andresen, B., et al., Thermodynamics for Processes in Finite Time, Acc. Chem. Res., 17 (1984), 8, pp. 266-271
  3. Sieniutycz, S., Salamon, P., Advances in Thermodynamics, Volume 4: Finite Time Thermodynamics and Thermoeconomics,Taylor & Francis, New York, USA, 1990
  4. Sieniutycz, S., Shiner, J. S., Thermodynamics of Irreversible Processes and Its Relation to Chemical Engineering: Second Law Analyses and Finite Time Thermodynamics, J. Non-Equilib. Thermodyn., 19 (1994), 4, pp. 303-348
  5. Radcenco, V., Generalized Thermodynamics, Editura Techica, Bucharest, Rumania, 1994
  6. Bejan, A., Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite Time Processes, J. Appl. Phys., 79 (1996), 3, pp. 1191-1218
  7. Berry, R. S., et al., Thermodynamic Optimization of Finite Time Processes, John Wiley and Sons, Chichester, UK, 1999
  8. Chen, L., Wu, C., Sun, F., Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems, J. Non-Equilib. Thermodyn, 24 (1999), 4, pp. 327-359
  9. Sieniutycz, S., Vos, A. de, Thermodynamics of Energy Conversion and Transport, Springer-Verlag, New York, USA, 2000
  10. Sieniutycz, S., Hamilton-Jacobi-Bellman Framework for Optimal Control in Multistage Energy Systems, Physics Reports, 326 (2000), 4, pp.165-285
  11. Sieniutycz, S., Thermodynamic Limits on Production or Consumption of Mechanical Energy in Practical and Industry Systems, Progress Energy & Combustion Science, 29 (2003), 3, pp. 193-246
  12. Chen, L., Sun, F., Advances in Finite Time Thermodynamics: Analysis and Optimization, Nova Science Publishers, New York, USA, 2004
  13. Sieniutycz, S., Farkas, H., Variational and Extremum Principles in Macroscopic Systems, Elsevier Science Publishers, London, UK, 2005
  14. Radcenco, V., et al., New Approach to Thermal Power Plants Operation Regimes Maximum Power versus Maximum Efficiency, Int. J. Thermal Sciences, 46 (2007), 12, pp. 1259-1266
  15. Rubin, M. H., Optimal Configuration of a Class of Irreversible Heat Engines, I. Phys. Rev. A., 19 (1979), 3, pp. 1272-1276
  16. Rubin, M. H., Optimal Configuration of an Irreversible Heat Engine with Fixed Compression Ratio, Phys. Rev. A., 22 (1980), 4, pp. 1741-1752
  17. Badescu, V., Optimal Paths for Minimizing Lost Available Work during Usual Heat Transfer Process, J. Non-Equilib. Thermodyn., 29 (2004), 1, pp. 53-73
  18. Amelkin, S. A., Andresen, B., Burzler, J. M., Maximum Power Process for Multi-Source Endoreversible Heat Engines, J. Phys. D: Appl Phys., 37 (2004), 9, pp. 1400-1404
  19. Amelkin, S. A., Andresen, B., Burzler, J. M., Thermo-Mechanical Systems with Several Heat Reservoirs: Maximum Power Processes, J. Non-Equilib. Thermodyn., 30 (2005), 1, pp. 67-80
  20. Song, H., et al., Optimal Configuration of a Class of Endoreversible Heat Engines with Linear Phenomenological Heat Transfer Law, J. Appl. Phys., 100 (2006), 12, 124907
  21. Song, H., Chen, L., Sun, F., Endoreversible Heat Engines for Maximum Power Output with Fixed Duration and Radiative Heat-Transfer Law, Appl. Energy, 84 (2007), 4, pp. 374-388
  22. Sieniutycz, S., Spakovsky, M. von, Finite Time Extension of Thermal Exergy, Energy & Conversion Management, 39 (1998), 14, pp. 1423-1447
  23. Sieniutycz, S., Nonlinear Thermodynamics of Maximum Work Finite Time, Int. J. Engng. Sci., 36 (1998), 5/6, pp. 577-597
  24. Sieniutycz, S., Kuran, P., Modeling Thermal Behavior and Work Flux in Finite Rate Systems with Radiation, Int. J. Heat Mass Transfer, 49 (2006), 17/18, pp. 3264-3283
  25. Kuran, P., Nonlinear Models of Production of Mechanical Energy in Non-ideal Generators Driven by Thermal or Solar Energy, Ph. D. thesis, Warsaw University of Technology, Warsaw, 2006

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence