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Optimal temperature profile for maximum work output of multistage continuous
Carnot heat engine system with two reservoirs of finite thermal capacity is deter-
mined. The heat transfer between heat source and the working fluid obeys radiation
law and the heat transfer between heat sink and the working fluid obeys linear law.
The solution is obtained by using optimal control theory and pseudo-Newtonian
heat transfer model. It is shown that the temperature of driven fluid monotonically
decreases with respect to flow velocity and process duration. The maximum work is
obtained. The obtained results are compared with those obtained with infinite low
temperature heat sink.
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Introduction

Since finite time thermodynamics and entropy generation minimization have been ad-
vanced, much work has been carried out on the performance analysis and optimization of finite
time processes and finite size devices [1-14]. Rubin [15, 16] analyzed the optimal configuration
of endoreversible heat engines with Newton heat transfer law [¢g o« A(T)] and different con-
straints, and derived the optimal configuration of the engines. Badescu [17] studied the optimal
heating paths with Newton and radiative heat transfer laws by taking the minimum entropy gen-
eration and minimum lost available work as the objectives. The obtained analytical expressions
of the optimal paths were presented in dimensionless forms. The similarities and differences be-
tween various heating strategies under the two heat transfer laws were compared. Amelkin et al.
[18, 19] discussed the maximum power processes of multi-heat-reservoir heat engine with sta-
tionary temperature reservoirs, found that some reservoirs were not used in heat transfer in order
to achieve an optimal performance of the system, and further found that independent of the num-
ber of reservoirs the working fluid used only two isotherms and two adiabatics. Song et al. [20]
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obtained the optimal configurations of endoreversible heat engine for maximum power and
maximum efficiency with linear phenomenological heat transfer law. Song et al. [21] further ob-
tained the optimal configuration of endoreversible heat engine for maximum power with radia-
tive heat transfer. Sieniutycz et al. [22] obtained the extremal work and optimal temperature
profile of multistage endoreversible continuous heat engine and heat pump systems with one
reservoir of finite thermal capacity. Sieniutycz [23] further obtained those of multistage
endoreversible discrete heat engine and heat pump systems with one reservoir of finite thermal
capacity. Sieniutycz et al. [24] and Kuran [25] established seudo-Newtonian heat transfer
model by using optimal control theory, and obtained the optimal temperature profile and
extremal work of multistage continuous irreversible Carnot heat engine and heat pump systems
with one reservoir of finite thermal capacity, in which the heat transfer between heat source and
the working fluid obeys radiation law and the heat transfer between working fluid and the heat
sink obeys linear law. Sieniutycz [26, 27] further given Hamilton-Jacobi-Bellman equations for
calculating extremal work with non-Newtonian heat transfer. In this paper, the maximum work
and optimal temperature profile of continuous multistage Carnot heat engine system with two
reservoirs of finite thermal capacity, in which the heat transfer between heat source and the
working fluid obeys radiation law and the heat transfer between the working fluid and heat sink
obeys linear law, are obtained by using optimal control theory based on refs. [24-27].

System model

The system model is shown in fig. 1.

The first fluid (driving fluid) and second fluid flow along the x-axis, the infinitesimal
Carnot heat engines are located continuously between two separated boundary layers of the flu-
ids. Each infinitesimal Carnot heat engine is the same. The driving fluid supplies the pure heat to
the infinitesimal Carnot engine at a high temperature 7 = 7T, and releases the pure heat to the sec-
ond fluid at a low temperature 7= T,. The cumulative work is delivered at the last stage in a fi-
nite time. The volume flux of the first and second fluids are V; and V,, respectively. The heat

trapsfer betwee'n the 'ﬁrst

T T+dr fluid and the infinitesimal

o T > Carnot engine obeys radia-
_D_ri”fg_fkjfj ______ X _1 . _7);1_{ dd_xT_1 ______ V_1 N tion law and the heat transfer
_______________ l 9 ] between the second fluid and
iR AL the infinitesimal Carnot en-

Work output gine obeys linear law. T

and T, are upper and lower

w temperatures of the working

fluid circulating in each in-

finitesimal Carnot engine.

————————————————————————————— Based on heat transfer
theory [28] and pseudo-

. -Newtonian heat transfer

> model [24-27], the heat flux
between the first fluid and
each engine is:

Figure 1. Work production model of multi-stage continuous
heat engine system
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do, =dy (T, - T\o) (1)

where dy; = a(7,*)d4, is the heat conductivity between engines and the first fluid, a,(7,*) —the
heat transfer coefficient, and d4, — the corresponding exchange surface area. The heat flux be-
tween the second fluid and each engine is:

dO, =dy(Thc — T) (2)

where dy, = a,d4, is the heat conductivity between engines and the second fluid, ¢, — the heat
transfer coefficient, and d4, — the corresponding exchange surface area. From eq. (1), one can
obtain:

d
To=T, - 49, 3)
dy,
From the entropy balance of the working fluid, one can obtain:
d d
a9, = 40, 4)
e Ty
Substituting eqs. (1)-(3) into eq. (4) yields:
Tz(Tl _ dQlj
Ty = ) (5)
;40,40
1
dy, dy,
Substituting eqs. (3) and (5) into n = 1 — (7,/T)¢) yields:
T,
n=l-——2 (©6)
r _9@ 4o
1
dy, dy,

Defining the overall heat conductivity as:

__ndyy _ enkdda, AZk)A o0 g yag Q)
dy, +dy, okdd+a,(1-k)dd o) +a;)

where o= ko, ah=(1—-k)a,, A=A, +A,, and k=A,/A. A, and A, are cumulative heat ex-
change surface areas between engines and two heat reservoirs, respectively. Then eq. (6) can be
rewritten as:

T,

n=l-—2_ ®)
r %0

dy

According to the conservation of energy diW = ndQ, + VldP, one can obtain:

AW = 1_T—2d
;90
dy

dQ, +7,dP 9)
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where dJ¥ is the power output of infinitesimal Carnot heat engine, P = aT*/3 —the radiation pres-
sure, a = 4o/c — the universal coefficient related to the Stefan-Boltzmann constant, and ¢ — the light
speed. For the first fluid, one has dQ, =V, ¢, (T,)dT}, where ¢ (T}) = 4aT*is the specific heat ca-
pacity of constant volume of the first fluid, and d7 — the differential temperature change of the
driving fluid; the temperature of the driving fluid decreases slightly along its path, i. e. dT; <0. For
the second fluid, one has dQ, =V, c,dT,, where d7, is the differential temperature change of the
second fluid, and ¢, — its specific heat capacity. Parameter ¢, is assumed to be a constant whenever
any integral formulae are derived. Thus eq. (9) becomes:

L i 4alTRdT

dW =V, (T))| 1- 10
1 v( l) dQl 1 3 ( )
T, ——=L
dy
For the convenience of expressing, we define “substitution heat capacity” as [24]:
dpP 4al’ 16
ey, (T)=c,(T)) +—=4al3? + —L = —aT>3 11
n(h)=c (Th) ar | 3 40 (1)
Thus, eq. (10) can be rewritten as:
. . T,
i =V, | ¢, (T)) = e, (T) —2— |dT, (12)
dg,
T, ——=L
dy

The cumulative power delivered per unit volume flux of driving fluid is obtained by
integration of eq. (12) between an initial temperature 7;; and a final temperature 7', of the fluid.
This integration yields the specific work of the flowing fluid in the form of the functional:

T,

By
w T.
W=f=—j (eaT) - e, () —2—lar, (13)
Vi r 99
T; 1
dy

Defining non-dimensional time as:

e a'aV,Fyx B a'aV,Fywt,

Ve, Ve,
where aV; = A/V, is the total specific exchange area per unit volume of the driving fluid, F, (as-
sumed to be a constant) — the fluid cross-sectional area perpendicular to X, v, — the linear veloc-

ity of the driving fluid, and #, — the contact time of this fluid with the heat exchange surface.
Therefore, the control variables can be designated here by u:

(14)

y=9 _ Ve, (W% _dn . (15)
dy  o'(T)ay Fdx  dr

For the second fluid, one can obtain:




Li, J., et al.: Maximum Work Output of Multistage Continuous Carnot Heat Engine System with Finite ...
THERMAL SCIENCE: Year 2010, Vol. 14, No.1, pp. 1-9 5

T. _d7, _ do, =—Kcv(ﬂ)T2u=—4fjla713T2u

<90 __ . . (16)
dr Vyedr Vo, (Ty +u) Vi, (T) +u)
Therefore, eq. (13) becomes:
T
)T
W:—I e, (1) - DD g0 (17)
. T, +u
Substituting ¢,(7}) = 16a7;?/3 and ¢ (T}) = 4aT? into eq. (17), one can obtain:
“rars T
W=—4aj —L 172 hudr (18)
3 T, +u

where 7; and 7; are the initial and final non-dimensional time of the process, respectively. We
will solve the problem by using the optimal control theory.

Application of the optimal control theory

We define the Hamiltonian function as:

H - ad AaT? T°T, 4 u_4a/121//T13T2u
3 T, +u : T, +u

where 1, and A, are adjoint variables and v = V'l/V'zc2 is constant positive for a fixed system.
Therefore the control equation is:

(19)

16aT3 -
a_H:o: Ay - | +4aT*T, A=Ay -0 (20)
ou 3 (T, +u)?
The adjoint equations are:
. 4aT 2T, u2T, +3u)(1-A
i :—a—H16aleu— 2 TuT +3u)(1-A,p) 21)
T (Ty +u)?
. 4a(Ayw — T3
i, =—0H _ a(Ay —DT'u 22)

o7, T, +u
The derivative of both sides of eq. (20) with respect to the non-dimensional time 7 is:

+4aTl4T2(1—/12y/) 16aTPTyu(l = 2,y)

| —16aT?u +
(T, +u)? (T +u)?
_8aT14T2 (1_}’2[/,)(”—"_”) _4al//T14T2/12 =0 (23)
(T, +u)’ (T} +u)?
Substituting eqs. (16), (21), and (22) into eq. (23) yields:
272+ Tyu? +3u’ =0 (24)

The solution of eq. (24) is represented by two expressions:

N R e (25)
li
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T
u=—2__ (26)
é T13 _

where ¢ is an arbitrary constant which is not equal to zero. Equation (25) is the optimal tempera-
ture profile of the driving fluid. Substituting eqs. (25) and (26) into eq. (16) yields:

T 8a 4a
In 7t =G - -0 -T)) @7)
2i

where 7); is the initial temperature of the second fluid. Equation (27) is the temperature profile
of the second fluid. It is easy to prove that the curve of eq. (25) is the maximum curve by using
Legendre condition. Therefore, for fixed initial and final states of the system (7}, = 7', 15 = T,

and 7\y= T}, Ty¢is unknown, T, > T), process duration (r; = 0, = 7y) and with the help of eq.

(25), one can obtain:
3(‘[f +In TfJ
_ Tio
=— (28)
2NT? =yT3)

Substituting eqs. (25)-(27) into eq. (18) yields the maximum cumulative work output
per unit volume driving fluid:

rit 473 ‘/ / T3
W =—4a j (—\/_ T2 )exp 8ay ——— 4at// d7, =
T 1 S 3
1/T3 1/T3' T3
exp Bay I 4al// 3 1
T4
=—4a 1t (29)
3 v
When the second fluid is infinite heat reservoir (7, = 7,, ¥ — 0) and T’ = T, one can
obtain:
T, T [ [
i 4T3 el T3 —,|T3
W, o mae. = —4alim L7y [| =T, = T2 |exp| 8ay Y11
¥—0, max. P, 1";3(1]11 2 J:(é\/_l 1 J p| cay 3

GRS

exp Say
T4
=—4alim at - =
y—0) 3 day
4 _ T3
:—4aTe— 4aT, VT8 AT L (30)
3 3
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Equation (30) is another form of the result in refs. [24-26] when internal irreversibility
factor @ = 1.

Numerical example

In the numerical calculation for the ~ 6000
performance characteristics of the sys-  TIK]
tem, 7,;=5800K, 7,,=1000 K, 7,, =  5000F
=300K,a=7.6:10""" Ws/m’K*, =150,
and v = 6.075-10° m3K/J are set. Substi- 4000}
tuting these data into egs. (25)-(29),
one can obtain 7, =1000K and & =  3000f
=—-0.000542228. The maximum cumu-
lative work output per unit volume driv-  2000¢
ing fluid is W= 0.10 J. The temperature
profiles of the first and second fluid are ~ 1000f

shown in fig. 2. From fig. 2 it can be seen 300

that the op.tm?al temperature proﬁle. of % 50 100 150 7 180
the first fluid is a monotonic decreasing

function of the non-dimensional time. Figure 2. Optimal temperature profiles
Conclusions

Based on finite time thermodynamics, the model of multistage continuous Carnot heat
engine system with two reservoirs of finite thermal capacity is established. The heat transfer be-
tween heat source and the working fluid obeys radiation law and the heat transfer between heat
sink and the working fluid obeys linear law. It is shown that the optimal temperature of driven
fluid for maximum work output monotonically decreases with respect to flow velocity and pro-
cess duration for fixed initial and final states and process duration. The obtained results can be
compared with those of refs. [24-26]. The similarities and differences of the results for two cases
are given below: for fixed initial and finial states and process duration, if one only controls the
driving fluid, whether the second fluid is finite or not, the optimal temperature profiles and the
optimal controls of driving fluid are described by maximums of the same type, egs. (25) and
(26). The maximum work outputs in two process modes are different. In general, the maximum
work output of the first mode (second fluid is finite) is not equal to that of second mode (second
fluid is infinite) for fixed initial and final states. The model and the analysis presented herein
provide a way for improving evaluation of the mechanical energy limits in practical systems.
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Nomenclature Greek letters

A — cumulative heat exchange surface areas a — heat transfer coefficients of fluid,
between engines and heat reservoir, [m?] [Wm K]

A — total heat exchange surface area of the o' — substitution heat transfer coefficient,
first and second fluids, [m?] [Wm K]

a — total specific exchange area per unit 4 — heat conductivity, [WK ']
volume, [sm™'] n — first-law efficiency, [-]

a — universal coefficient related to the A — adjoint variable, [-]
Stefan-Boltzmann constant (= 46/c), & — arbitrary constant which is not equal to
[Wsm K] zero, [—]

c — specific heat capacity, [Jm K] c — Stefan-Boltzmann constant, [Wm K]

c — light speed, [ms '] T — non-dimensional time, [—]

F — cross-sectional area, [mz] 74 — constant positive for a fixed system

H — Hamiltonian function, [—] [= /e, [mSKr]]

k — ratio of surface area, [—] .

P — radiation pressure, [Wsm ] Subscripts

@] — cumulative heat, [J] C — circulating working fluid

T — variable temperature of fluid, [K] e — environment

t — time, [s] f — finial state

u — rate of temperature change as the control h — substitution heat capacity

] variable, [K] i — initial state
vV — volume flux of the fluid, [m’s™"] v — constant volume of the first fluid
v — linear velocity of fluid, [m*s™'] 1,2 — first and second fluid

W, W - work and power, [J, W]

X — transfer area coordinate, [—]
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