THERMAL SCIENCE
International Scientific Journal
A LATTICE BOLTZMANN COUPLED TO FINITE VOLUMES METHOD FOR SOLVING PHASE CHANGE PROBLEMS
ABSTRACT
A numerical scheme coupling lattice Boltzmann and finite volumes approaches has been developed and qualified for test cases of phase change problems. In this work, the coupled partial differential equations of momentum conservation equations are solved with a non uniform lattice Boltzmann method. The energy equation is discretized by using a finite volume method. Simulations show the ability of this developed hybrid method to model the effects of convection, and to predict transfers. Benchmarking is operated both for conductive and convective situation dominating solid/liquid transition. Comparisons are achieved with respect to available analytical solutions and experimental results.
KEYWORDS
PAPER SUBMITTED: 2008-09-09
PAPER REVISED: 2009-02-17
PAPER ACCEPTED: 2009-02-26
THERMAL SCIENCE YEAR
2009, VOLUME
13, ISSUE
Issue 2, PAGES [205 - 216]
- Bouzidi, M., Firdaouss, M., Lallemand, P., Momentum Transfer of a Boltzmann-Lattice Fluid with Boundaries, Phys. Fluids, 13 (2001), 11, pp. 3452-3459
- Chen, S., Doolen, G., Lattice Boltzmann Method for Fluid Flows, Annual Review of Fluid Mechanics, Annual Reviews, Palo Alto, Cal., USA, 30 (1998), January, pp. 329-364
- Ginzburg, I., Steiner, K., A Free-Surface Lattice Boltzmann Method for Modelling the Filling of Expanding Cavities by Bingham Fluids, Phil. Trans. R. Soc. Lond. A, 360 (2002), March, pp. 453-466
- Alexander, F. J., Chen, S., Sterling, J. D., Lattice Boltzmann Thermohydrodynamics, Physical Review E, 47 (1993), 4, pp. R2249-R2252
- Bhatnagar, P., Gross, E., Krook, M., A Model for Collision Process in Gases, I: Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. E, 94 (1954), 3, pp. 511-525
- Chen, S., Doolen, G., Lattice Boltzmann Method for Fluid Flows, Annual Review of Fluid Mechanics, Annual Reviews, Palo Alto, Cal., USA, 30 (1998), January, pp. 329-364
- Ginzburg, I., Steiner, K., A Free-Surface Lattice Boltzmann Method for Modelling the Filling of Expanding Cavities by Bingham Fluids, Phil. Trans. R. Soc. Lond. A, 360 (2002), March, pp. 453-466
- Ganaoui, M. El, et al., Computational Solution for Fluid Flow under Solid/Liquid Phase Change Conditions, Int. J. Computers and Fluids, 31 (2002), 4-7, pp. 539-556
- Gau, C., Viskanta, R., Melting and Solidification of a Metal System in a Rectangular Cavity, Int. J. Heat Mass Transfer, 27 (1984), 1, pp. 113-123
- Frisch, U., Hasslacher, B., Pomeau, Y., Lattice Gas Automata for the Navier Stokes Equation, Phys. Rev. Lett., 56 (1986), 14, pp. 1505-1508
- Bhatnagar, P., Gross, E., Krook, M., A Model for Collision Process in Gases, I: Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. E, 94 (1954), 3, pp. 511-525
- Hou, S., et al., Simulation of Cavity Flow by the Lattice Boltzmann Method, J. Comput. Phys., 118 (1995), 2, pp. 329-347
- Shu, C., Peng, Y., Chew,Y. T., Simulation of Natural Convection in a Square Cavity by Taylor Series Expansion and Least Squares-Based Lattice Boltzmann Method, International Journal of Modern Physics C, 13 (2002), 10, pp. 1399-1414
- Peyret, R., Taylor, T. D., Computational Methods for Fluid Flow, Springer-Verlag, New York, USA, 1983
- Mohamad, A. A., Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer, Sure Printing, Calgary, Alberta, Canada, 2007
- Leonard, B. P., Mokhtari, S., Beyond First Order Upwinding: The ULTRA-SHARP Alternative for Non-Oscillatory Steady-State Simulation of Convection, Int. J. Numerical Methods Eng, 30 (1990), 4, pp. 729-766
- Semma, E. A., El Ganaoui, M. , Bennacer, R., Lattice Boltzmann for Melting/Solidification Problems, Comptes Rendus Mécanique, 335 (2007), 5-6, pp. 295-303
- Semma, E. A, El Ganaoui, M., Bennacer, R., Mohamad, A. A., Investigation of Fows in Solidifcation by Using the Lattice Boltzmann Method, International Journal of Thermal Sciences, 47 (2008), 3, pp. 201-208
- Filippova, O., Hänel, D., Grid Refinement for Lattice - BGK Models, J. Comp. Phys., 147 (1998), 1, pp. 219-228
- Mei, R., Luo, L-S., Shyy, W., An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method, J. Comp. Phys, 155 (1999), 2, pp. 307-329
- de Vahl Davis, G., Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution, Int. J. Numerical Methods in Fluids, 3 (1983), 3, pp. 249-264
- Ozisik, M. N., Heat Conduction, John Wiley and Sons, New York, USA, 1980
- Rathjen, K.A., Jiji, L. M., Heat Conduction with Melting or Freezing in a Corner, J. Heat Transfer, 93 (1971), 1, pp. 101-109
- Brent, A. D., Voller, V. R., Reid, K., The Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal, J. Num. Heat Transfer B, 13 (1988), 3, pp. 297-318
- Semma, E. A., et al., High Order Finite Volume Scheme for Phase Change Problems. Finite Volumes for Complex Applications IV (Eds. F. Benkhaldoun, D. Ouazar, S. Raghay), Hermés Science Publishing Ltd., London, 2005, pp. 493-503
- Stella, F., Giangi, M., Melting of a Pure Metal on a Vertical Wall: Numerical Simulation, Numerical Heat Transfer A, 38 (2000), 2, pp. 193-208
- Campbell, T. A., Koster, J. N., Visualization of Liquid-Solid Interface Morphologies in Gallium Subject to Natural Convection, J. Crystal Growth, 140 (1994), 3-4, pp. 414-425
- Lacroix, M., Voller, V. R., Finite Difference Solutions of Solidification Phase Change Problems: Transformed Versus Fixed Grids, Numerical Heat Transfer B, 17 (1990), 1, pp. 25-41