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A numerical scheme coupling lattice Boltzmann and finite volumes approaches has
been developed and qualified for test cases of phase change problems. In this work,
the coupled partial differential equations of momentum conservation equations are
solved with a non uniform lattice Boltzmann method. The energy equation is
discretized by using a finite volume method. Simulations show the ability of this de-
veloped hybrid method to model the effects of convection, and to predict transfers.
Benchmarking is operated both for conductive and convective situation dominating
solid/liquid transition. Comparisons are achieved with respect to available analyti-
cal solutions and experimental results.
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Introduction

Computational fluid dynamics (CFD) simulations of flows and transfers are generally
based on space and temporal discretization of differential equations describing macroscopic
state, i. e., solving continuum mechanics formulation for the conservation equations. However,
their solutions can be very difficult when considering complex geometries and moving bound-
aries and/or with multi-physics state. This justifies the development of new routes of simula-
tions such as lattice Boltzmann (LB) approaches. These methods are in progress and become a
serious alternative to traditional CFD methods [1-4]. LB methods are especially well suited to
simulate flows in complex geometries, and they are straightforwardly implemented on parallel
machines [5-6]. The main goal of these methods is being to model the fluid flow at the micro-
scopic level in term of local interactions between particles. Several advantages are listed for
these methods. For instance, the method should be easier and allows an intuitive treatment of
particular conditions like presence of obstacles [7]. However, classical methods still exhibiting
indubitable advantages and the coupling with new approaches become an interesting way to be
innovative for solving stiff problems.

The purpose of this paper is to develop an efficient and accurate numerical methodology
to deal with solid/liquid phase change problems generally treated by using a combination of ade-
quate partial differential equations formulation (multidomains, enthalpy, ...) and classical
discretisation (finite volumes, finite elements, ...) [8]. The present scheme will take advantage
both from the LB method and finite volume (FV) ones. A control volume numerical method based
on high-order schemes will be used for energy equation. The LB method based on distribution
functions is used to simulate fluid flows. The evolution equations for these distributions are de-
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rived from the continuous Boltzmann equation with appropriate approximations for incompress-
ible flows. The performance of the method (coupling LB to FV) is then examined for the restricted
configuration to fluid flow followed by a comparison with the experimental results of Gau et al.
[9] on the morphology and positions of the solid/liquid interface (this is a very popular test case for
classical methods).

Models and solution methods
The solution based on continuum medium formulation

Classically, the balance equations are derived from continuum media theory to de-
scribe transfers of mass, momentum, and energy (and eventually species). Theses governing
equations for natural convection with phase change can be written as:

V-i=0 (1)
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where U is the velocity vector, 7—the temperature, P—the pressure, and ¢ — the liquid fraction.

The grouping Pr, Ra, and Ste refers to Prandtl, Rayleigh, and Stefan numbers, respec-
tively, which are non-dimensional numbers based on physical properties and commonly used in
CFD:

€)

pr=y, Ra=PATH o ste= PAT (4)
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where v and  are the kinetic viscosity and the thermal diffusivity, respectively.

With assuming constant properties (v, @) and Boussinesq approximation for density p:
p =poll —B(T—T,)], where p, and T, are the reference values of density and temperature, re-
spectively, and S is the coefficient of thermal expansion.

Such conservative system of equation is completed by initial and boundary conditions
(specified here for each application). Generally it is discretized by classical methods as finite
differences, finite elements, or FV. In the following the FV is used for scalar equation (eq. 3) be-
cause the task of the present work is LB and FV coupling. LB method will be used for solving
eqs. 1 and 2.

The LB method provides another way for solving the dynamic field. LB methods are a
class of mesoscopic particle based approaches to simulate fluid flows. Historically, the LB ap-
proach is developed from lattice gases, although it can also be derived directly from the simpli-
fied Boltzmann BGK (Bhatangar-Gross-Krook) equation. In lattice gases, the particles jump
from one lattice node to the next, according to their (discrete) velocity. This is called the propa-
gation phase. Then, the particles collide and get a new velocity, the collision phase. Hence the
simulation proceeds in an alternation between particle propagations and collisions. The two
phases can be clearly distinguished.

The dynamic solution based on LB procedure

The LB method employed in this study uses a square lattice (Frisch-Hasslacher-
-Pomeau model) (fig. 1) [10], the main equation is:
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where f; is the particle distribution function defined for the
finite set of discrete particle velocity vectors ¢, . The colli-
sion term £2; on the right hand side of eq. (5) uses the BGK
approximation [11]. The essence of this approximation for
LB method is that the collision term £2; will be replaced by
the well-known single time relaxation approach:

P Aeq
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Figure 1. Schematic diagram of the

T
. L o -
where 7 is the relaxation time and f,* is the local equilib D2Q09 lattice

rium distribution function that has an appropriately pre-
scribed functional dependence on the local hydrodynamic
properties.

F, represents the external force fields that give rise to a body force. This force term is
self-consistently generated by the neighbouring distribution functions around each lattice site
and doesn’t violate either the local mass conservation or the global momentum conservation.
The total imposed body force is given by:

Y& F, =F=pG (7
where G is the buoyancy source term which can be described as:
G=88(T ~Tyr) ®)

This relation is consistent with the Boussinesq approximation. g represents the gravity
acceleration, 3 is the volumetric thermal expansion coefficient, and 7,..— the reference tempera-
ture.

The present LB equation for dynamical system is completed by choosing the equilib-
rium distribution:

¢;,-u 9(;-u)? 3u-u
M =@.p|1+3——+=— -= 9
/i lp{ 2 a3y a } )
where o, are the weights that are given by the length of the velocity vector:
1 1
w,=0 and w, =—; ® =— for k=12,.. 10
0 2T 3 21 T g (10)
The discrete velocities for D2Q9 lattice are defined as:
¢, =(0,0)

Cop s = c[cos kg, sin k ﬂ and ©,, = x/2_c[cos(2k - 1)%, sin(k — 1)%} (In

fork=1, 2, ...., where ¢ =0x/0t and dx and &t are the lattice space step and the lattice time step
size, respectively. The macroscopic variables such as density and velocity in non-dimensional
form are obtained as:

p(E.1) =3 £, 1) (12)
P, 1) =&, f; (% 1) (13)
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The Chapman-Enskog expansion for the density distribution function can recover the
continuity and Navier-Stokes equations. The detailed derivation of this procedure is given by
Hou et al. [12] and will not be shown here. The kinematic viscosity v is given by:

v=(rv—%JcS2 (14)

As explained, the LB are generally exploited in a uniform grid, but it is well known in
CFD that problems can exhibits areas of high gradients of solution. For instance, for high Ray-
leigh number, the thermal boundary layer is very thin. In order to capture the physical properties
within the boundary layer, a higher density of grid points is needed.

Implementation of LB method on non-uniform grid

This can be carried out by the non-uniform grid using Taylor series expansion and
least square based lattice Boltzman method (TLLBM) [13]. When the TLLBM technique is ap-
plied to eq. (5), the final form is: v
Ji(xet+61)= z ay S e (15)

where a,, are the elements of the first row of the matrix [A] defined as:
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where Axyy = xy + ¢, 01 — X, Ay =y + ¢, 0 — yp, and
— 1 - | .
fk =l 1-- fi(X:Ci:t)J’__fiq(X:Ci’t) (17)
T T

The temperature field by FV method

The numerical approach used to solve the energy equation is based on a classical FV
approximation [14]. Let consider a two-dimensional convection — diffusion equation for a gen-
eral variable ¢ coupled to the continuity equation:

SO F =S (18)
ot

in which F(¢) = up —y,Vois the advection-diffusion tensor with the convective part Fc = up
and the diffusive part £d = y,Vo.
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Equation (18) gives the expression of the conservation of the variable ¢ in an infinites-
imal domain, it can be written in any sub-domain » and for all time ¢ and ¢’ as:

[, 1')dx - [p(%, A% + [ | Fr,(R)doE)dxds = [] (%, )dxdr (19)
Vv Vv t ov Vit

where 7(x) is the normal vector to the boundary J at point x, outward to V.

In order to define a FV scheme, the time derivative is approximated by a finite differ-
ence scheme on an increasing sequence on time (¢,)n € IN with 7, = 0. The discrete unknowns at
time 7, = ndt, are expected to be an approximation of ¢ around the point M;; on the cell V" and
noted g7

Equation (14) is integrated over each cell V' using the Gauss divergence theorem (fig.

2): n

I(ﬁpj dv+ [ Fre,do(X)dy = [ £(% 1, ) (20)

A ot av v
where (0p/0t)" is given by the time scheme at -y g e
the time step ¢, = n 8t in the control volume V. } i i i - i
The next step of the method is the approxima- ; ; ;
tion of the convective part F, 7y and the diffu- ~ Foofsrdermrres g =0 il
sive part F;7), of the projected flux F-r, over | Eaaied) ’
the boundary 6V of each control volume. Ia\y '

e I S e B v

The time integration is performed implic-
itly by using a three level Euler scheme, given
a second order truncation error in time.

The diffusive part of the flux is discretized
with a second order truncation error in space | i
(if uniform mesh). Different discretizations | \]
for the convective fluxes are possible, central —~— +———F~
schemes apply a symmetric interpolation for
¢;.1,- Upwind schemes apply aone side inter- ~ Figure 2. Lattice nodes and control volumes in a
polation. Leonard [15-16] has introduced 2-D rectangular geometry
Quick and other schemes as a combination be-
tween the two kinds of interpolation. We have used the Quick scheme with a second order trun-
cation in space. Verifications and validations are achieved and detailed in [25].

The good stability properties of the scheme have been exhibited for time-dependent
Navier-Stokes equations for fluid flow and extended to phase change configuration exhibiting
strong solid/liquid interactions.

N Lalice nodes X

¥ Heat
exchange

Phase change treatment

As mentioned before, in a phase change system
of a pure metal, three distinct regions will be pres-
ent (fig. 3): a full solid zone (heat transfers), a full
liquid zone (dynamic), and a solid-liquid interface

region. In this study a mathematical model is devel- Iﬁﬁ:ég E:::Se ,?:22.3
oped to study the phase change problems and using zone
any phase change material. Liquid phase is Newto- L

nian and incompressible, the flow is laminar; it i Figure 3. Illustration of transfers in the hori-
further assumed that the third dimension of the cav-  zontal Bridgman cavity
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ity is sufficiently long to consider the flow two-dimensional. Viscous dissipation is negligible in
comparison with conduction and convection.

An enthalpy formulation is used (eq. 3) by considering continuum media for thermal
field [17-18]. The melting process takes place over a temperature range 7+ ¢ where ¢ is a small
quantity (typically € = 5% of AT). The basic idea of the enthalpy method is to separate the sensi-
ble and latent heat components in the vicinity of the solid-liquid interface (77— < T'< Ty + ).
The latent heat component is expressed in term of the latent heat L;and liquid fraction ¢, which
is defined as:

$=1 for T>T; +¢
$=0 for T<T;-¢ 21
¢=w for T, —e<T<T;+¢

2e

Dynamically, the solid/liquid interface is treated like a boundary condition. In prac-
tice, the boundary conditions are given according to the macroscopic variables i and p. How-
ever, in the LB method, the real boundary conditions must be transformed into relations on the
distribution functions at each lattice point of the boundaries. The choice of these relations can
affect the accuracy and the stability of the method [1-2]. For the LB method, at the boundaries,
the particle distribution functions f; going inside the medium are unknown and there are com-
puted from the boundary conditions and f; going outside the medium.

In the present study, the solid/liquid interface is treated like a curved solid boundary
conditions (BC). For this kind of BC, several schemes were developed. We adopted the extrap-
olation proposed by Bao et al. [18]. In fig. 2, the curved interface is located between solid node
and fluid node, withA =|x; —x, | / |xf - xb| denoting the fraction of link of the fluid zone. The
volume surrounding the lattice node x,, is not homogeneous and contains both the solid and lig-
uid phases. The streaming step is treated differently by computing f: : (x¢, 1) at boundary node
x,, where f : 1s the post-collision state of the distribution function. As it is proposed by
Filippova et al. [19] and revised by Mei et al. [20], the following relations on the curved inter-
face are used:

FiEy,)=0-0)f; G )+ 2f Gy t) (22)

where y is the weighting factor.
To guarantee the mass conservation, f;" (x,, ?) is defined by:

¢ -u 9(e;-Ug)? 3uU,-u
) =w. p(x,, ) 1+3—0f 2 T f7  ZfF T F 73
fl ( b ) 1p( w )|: CZ 5 C4 5 C4 ( )

where p(x,, ) is called the wall density; it is computed so as to ensure not loss of the mass at the
solid boundary. U ¢, %, and p(x,,, ¢) are given by:

3 2A -1 1
U,,=0,——14, and = for A>— 24
of =t Tt 4 1 > (24)
T+~
2
2A -1 1
Uy, =1 and y = for A< -
bf f X o > (25)
p(x,, ?) is calculated from the conservation mass relation:
> fi= X A

autcoming incoming
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The use of the present implementation of the mass conserving BC makes it possible
precisely take account of the convection interaction with the form and the progression of the
solid-liquid interface (fig. 4). This technique returns the method of tracked interface dynami-
cally possible in LB method.

Benchmarking

First, it is important to mention that the pure convective solution is in good agreement
with the traditional exercise of a cavity differentially heated containing a fluid with air Prandtl
(Pr=0.71). The Rayleigh number is varied between Ra = 10° and Ra = 10°. The numerical val-
ues are in good agreement with the reference results [21] (see tab. 1). The present method thus
exhibits good aptitudes to simulate accurately thermoconvectives phenomena. The following
work focus on the phase change coupling.

In the case of phase change occurrence, the au-

thors adopted a methodology of validation by con- Solid-liquid interface
sidering first a classical phase change Stefan prob- A \
lem followed by a situation of phase change it P Y h

coupling conductive and convective transfers.

Table 1. Results of the convection test in a differen-
tially heated square cavity (present values — bold, de
Vahl Davis results [21])

Ra Unax Viax

10° 3.699 3.697 3.650 3.649

10* 19.620 | 19.617 16.213 16.178 \‘}

10° 68.68 68.59 34.817 34.73

10 | 220418 | 21936 64.763 64.63 Figure 4. Lay-out of the lattice and curved
) ) solid-liquid interface

Benchmark 1: LBFVM vs. heat-balance
integral method (HBIM) for Stefan problem

Direction of the front

This exercise aims to evaluate the ability of
the method to treat the phase change problem in
the condition of a pure diffusion. 1-D solidifica-
tion systems (the called Neumann problem) is ~ *=¢
considered [22]. The geometry configuration  Figure 5. Sketch of the geometry and boundary
and the boundary conditions are shown infig. 5.  conditions for the Stefan problem

A liquid at a uniform temperature 7 that is
at or higher than the melting temperature 7, of
the solid phase is confined to a half-space x > 0. At time # = 0 the boundary surface at x =0 is low-
ered to a temperature 7. below 7, and maintained at that temperature for times # > 0. As aresult,
solidification starts at the surface x = 0 and the solid-liquid interface moves in the positive x-di-
rection.

Liguid Solid

Hot wall
Front
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An analytical solution of the location of the solidification interface in the semi-infinite
domain is given by the relation:

X(t) =2Avat (26)
where « is the coefficient of heat diffusion and A — a constant controlled by the following alge-
braic equation: -1

Ste _per| 1, % (25)
J; erf(1) erfc(1)

Simulations were carried out in a rectangular cavity of aspect ratio 0.04 of the domain
and a Stefan number of Ste =0.5. Table 2 shows a good agreement between our work and HBIM
simulation. Figure 6 shows a good agreement of the numerical results (LBFVM) with the analyt-
ical estimations for a value A = 0.445. The error introduced by the consideration of a finite do-
main remains negligible for the positions of the interface not exceeding a maximum limit. This
validation shows the capacity of the method to describe accurately the progression of the
solid-liquid interface in a conductive mode.

Table 2. Comparison of the present -
solution with HBIM method for £ 0.10-
different values of Ste 8
@
Qo
Ste ) LBFYM ) HBIM %
0.01 0.0706 0.0707 0% —=— Numerical solution
ol 0.2228 0.2232 —— Analytical solution
0.004
1 0.6589 0.6600 , . r ;
0 500 1000 1500 2000 2500
10 1.2723 1.2903 Time [lattice unit]
Figure 6. Numerical and analytical melting
100 1.7260 15991 front location for 1-D Stefan problem
(Ste=10.5)
T=T,

Benchmark 2: solidification interacting
with fluid flow

This exercise is devoted to the interaction of
r=1 T=T, T=T, the convection with the solidification occurrence.
A thermal shock held on the liquid surface (pre-
senting an analytical solution in the conductive
case, i. e. Ra=0). The domain presented in fig. 7
is a square cavity filled with a liquid phase (char-
PR " acterized by a Prandtl number Pr = 7.36) and
brought up to an dimensionless hot temperature
Figure 7. Geometry and boundary conditions (T = 0.33). Brutally, we applied a cold tempera-
of the solidification case ture (7. =—0.67) at the edges. The dimensionless
melting temperature is 7, = 0.

The semi-analytical of this problem, for Ra =0, in a semi infinite region was obtained

by Rathjen et al. [23]. The numerical results in the diffusive regime are in good agreement with
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the analytical solution. The study of Rathjen ef al. solution is extended here to convective re-
gimes.

The set of egs. (1)-(3) is solved for dimensionless numbers: Ra = gBATH?/va €[0.10%],
Ste = CpAT/Li€[0.1, 1.0], and Pr="7.36. The domain consists on a rectangular cavity (fig. 7). The
boundary and initial conditions are given as:
— initial conditions

Vx € Q=[0,1]x[0,1], T|I:0:1,  _,=0

— boundary conditions

xeoQ2 ’ xeoQ

Results presented here are gotten with Nx x Ny =100 x 100 for and 200 x200 for Ra= 108,
More accurate results can be obtained through calculations with a finer mesh, but they require
more computer CPU time and memory capacity. Therefore, a non-uniform mesh is adopted in or-
der to save CPU time while maintaining accuracy. The grid points are distributed as small grid
spacing near the left wall to obtain sufficient resolution of the boundary layers formed along the
surfaces.

The phase change phenomenon (solidification) of the fluid was studied for various
Rayleigh numbers. For Ra < 106, the convective motion intensity is very weak and do not affect
the kinetics of the phase change. This is well illustrated in fig. 8. Indeed, because of the fluid
flow developed in the melt zone, the maximum temperature falls rapidly, which is not the case
for low Ra. This conclusion is valid for the evolution of the liquid fraction which tends quickly
towards 0O for high Ra. The convective motion developed within the fluid zone improves heat

o
~

o
o
h

Temperature, T,
L o
N o
h |

—0.41

0.6 1

2 108 35 10
Time [lattice unit]

T
1x10%

Figure 8. Evolution of the maximum temperature
(Ste =0.5)

transfer between the two phases and acceler-
ate consequently the solidification process
for high Ra.

Also the latent heat effect (Stefan num- Figure 9. Interfaces and velocity at different
ber) on the convective cells is studied. This instants of soligiﬁcation for various Stefan
effect is simulated for the Rayleigh number numbers (Ra =10°) (lu ~ lattice unit)
value (Ra = 10%). Figure 9 shows the velocity
field progression and the behavior of the solid-liquid interface. For Ste = 0.1 and Ste = 0.5, the
latent heat is very important, this delays the progression of the solid-liquid interface (fig. 10).
This situation is in favor of the development and the intensification of the convective move-

Ste=1.0
f=101312 (lu) t = 2800C0 {lu) t= 537500 (u)
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= s, ments and consequently, a significant effect on
FEF B R S the progression and the form of the solid-liquid
o e . . . . .
8 o Se T, interface can be noted. This effect is less signifi-
§ "\,\‘ ™ — cant in the case of Ste = 1.
k=) ‘e ° R
407 Ay Benchmark 3: melting interacting
"o with fluid flow
—A——4+— Ste=0.1 .
—%——*— Ste=05 e . . .
e e Ste=10 The experimental analysis of the melting of
2 Iy 105 the gallium in a rectangular cavity from a vertical
Time [lattice unit] wall was initially proposed by Gau et al. [9]. A
Figure 10. Evolution of the total liquid fraction p artIC}llar attention .has been carried on the buoy-
for various Stefan numbers for Ra = 108 ancy-induced flow in the pure metal and its effect

on the solid-liquid interface position and heat
transfer conditions. This experience has been
considered as a test case to qualify the mathemat-
ical formulations used for the numerical simula-
tion of phase change problems since first numeri-
cal results of Brent et al. [24] using an
enthalpy-porosity formulation FV solved at first
order [9]. Semma ef al. showed how the accuracy
of the used scheme affects directly the
oy @ multicellular flow occurrence [25]. The Gallium
Adiabatic is contained in a two-dimensional rectangular
Figure 11. Geometry and boundary conditions ~ CaVity of height A and width L (fig. 11). The ma-
of the melting case terial is assumed to be initially in solid state at its
melting temperature 7, = 28.3 °C. The tempera-
ture at the bottom surface is increased suddenly to 38.0 °C, while the other walls are maintained
in adiabatic state. Attime 7= 0, the temperature of the left vertical wall is raised impulsively to a
prescribed temperature above the fusion point, 7\, > T,,..

The set of equations (1)-(3) is solved for dimensionless numbers corresponding to ex-
perimental data of Gau ez al. [9]: Ra= gBATH?/va =7-105, Ste = CpAT/L;= 0.046. The domain
consists on a rectangular cavity. The boundary and initial conditions are given as follows:

— initial conditions

Adiabatic
VPP IS I I I I IIIIIIIIIITI D4

Gallium in solid state

e
Adiabatic

Vx € Q2 =[0,143]x[0,1], T|t:0 =1, a|t:0 =
— boundary conditions
or =0, 7| =1 d =
6n = As y=0:y=] x=0 xed2

Results presented here are gotten with Nx x Ny =201x140. More accurate results can
be obtained through calculations with a finer mesh, but they require more CPU time. Therefore,
a non-uniform mesh is adopted in order to save CPU time while maintaining accuracy. The grid
points are distributed as small grid spacing near the left wall to obtain sufficient resolution of the
boundary layers formed along the surfaces.

The evolution of melting front is compared with those measured by Gau et al. [9] as
shown in fig. 12. The interface position given by the present enthalpy model is in good agree-
ment with the reference results. The initial temperature and the difficulty to maintain a constant
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2min 6 min. 10 min. .
ra——e—a temperature on the heated wall can be a source of dis-
¥ ,'/ . crepancies between the predicted solid/liquid front and
g - o the experimental one.
: . .'6 The numerical results in terms of flow structures
* d' ’/6 and solid-liquid interface position are in good agree-
® o ® ---- Numerial ment with reference results [26-28]. Indeed, at the be-
e _ ginning of fusion process, there is appearance of a one
# e & ® ® Experimental . . !
® o flow cell with low intensity for (¢ <20 s). Thereafter
: pe and with the progression of the interface and the in-

crease of the Rayleigh number of the liquid zone, there
Figure 12. Numerical and experimental g bifurcation towards a multi cellular structure. When
solid-liquid interface profiles the melt size increases with time, the number of flow
cells decreases by merging of the two upper cells.

Conclusions

A methodology coupling lattice Boltzman and finite volume approaches is developed
for modelling solid-liquid phase change problems.

Benchmarking have been operated for conductive and convective solution exhibiting
analytical solution or experimental results and present numerical results are in good agreement
with and show the ability of the high-order finite volume coupled to lattice Boltzmann method
to solve stiff phase change problems.

One important extension is the possible use of such coupling to study complex config-
urations of crystal growth associating the efficiency of the finite volume approach for conserva-
tive laws and the flexibility of the lattice Boltzman approach for complex geometries.
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