International Scientific Journal

Thermal Science - Online First

online first only

Study on heat transfer characteristics of single-layer double-row pulsating heat pipe

The structure and inclination angle of a pulsating heat pipe are critical factors influencing the heat transfer performance and operation mode. In this work, a single-layer double-row pulsating heat pipe is designed, and the start-up and heat transfer characteristics of pulsating heat pipe at limit angles (0°,90°, and 180°) are experimentally investigated. Also, the operation mode and heat transfer characteristics are studied through IR imager and temperature profiles. The study highlighted that the pulsating heat pipe has excellent operation characteristics in the limit angle. When the inclination angle is 0°, the double-row structure improves the start-up performance; at 90° inclination, the pulsating heat pipe starts the fastest, and the heat transfer resistance keeps the smallest in the whole test. When the inclination angle is 180°, the pulsating heat pipe has the best thermal sensitivity but weak working fluid flow capacity during operation.
PAPER REVISED: 2021-06-23
PAPER ACCEPTED: 2021-06-24
  1. C. Dang, et al., Investigation on thermal design of a rack with the pulsating heat pipe for cooling CPUs, Appl. Therm. Eng., 110 (2017), 5, pp 390-398.
  2. M. Uddin, et al., Energy efficiency and low carbon enabler green IT framework for data centers considering green metrics, Renew. Sust. Energy Rev., 16 (2012), 6, pp 4078-4094.
  3. A. Arya, et al., Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater, Heat Mass Transfer., 54 (2018), 4, pp 985-997.
  4. M.M. Sarafraz, et al., Assessment of the thermal performance of a thermosyphon heat pipe using zirconiaacetone nanofluids, Renew. Energ.,136 (2019), ,pp 884-895.
  5. M.M. Sarafraz, et al., Thermal evaluation of a heat pipe working with n-pentane-acetone and n-pentane-methanol binary mixtures, J. Therm. Anal. Calorim., 139 (2020), 6, pp 2435-2445.
  6. H. Akachi, Structure of a Heat Pipe, 1990, U.S. Patent 4921041.
  7. S. Jun, et al., Comparison of the thermal performances and flow characteristics between closed-loop and closed-end micro pulsating heat pipes, Int. J. Heat Mass Tran., 95 (2016),4 , pp 890-901.
  8. S. Jun, et al., Experimental investigation on the effect of the condenser length on the thermal performance of a micro pulsating heat pipe, Appl. Therm. Eng., 130 (2018), 5, pp 439-448.
  9. V. Ayel, et al., Experimental study of a closed loop flat plate pulsating heat pipe under a varying gravity force, Int. J. Therm. Sci., 96 (2015), 10, pp 3-34.
  10. S.M.Thompson, et al., An experimental investigation of a three-dimensional flat-plate oscillating heat pipe with staggered microchannels. Int. J. Heat Mass Tran., 54 (2011), 17, pp 3951-3959.
  11. Z. Xue, et al., Experimental study on effect of inclination angles to ammonia pulsating heat pipe. Chinese J. Aeronaut., 27 (2014), 5, pp 1122-1127.
  12. H. R. Goshayeshi, et al., Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field. Exp. Therm. Fluid Sci., 74 (2016), 6, pp 265-270.
  13. Aboutalebi M, et al., Experimental investigation on performance of a rotating closed loop pulsating heat pipe. Int. Commun. Heat Mass, 45 (2013), 7, pp 137-145.
  14. Kelly B, et al., Novel radial pulsating heat-pipe for high heat-flux thermal spreading. Int. J. Heat Mass Tran., 121 (2018), 6, pp 97-106.
  15. Burban G, et al., Experimental investigation of a pulsating heat pipe for hybrid vehicle applications. Appl. Therm. Eng., 50 (2013), 1, pp 94-103.
  16. P. Charoensawan, et al., Closed loop pulsating heat pipes Part A: parametric experimental investigations. Appl. Therm. Eng., 23 (2003), 16, pp 2009-2020.
  17. J. Lee, et al., Effects of the number of turns and the inclination angle on the operating limit of micro-pulsating heat pipes. Int. J. Heat Mass Tran., 124 (2018), 9, pp 1172-1180.
  18. K. H. Chien, et al., A novel design of pulsating heat pipe with fewer turns applicable to all orientations. Int. J. Heat Mass Tran., 55 (2012), 21, pp 5722-5728.
  19. M. Mameli, et al., Thermal instability of a closed loop pulsating heat pipe: combined effect of orientation and filling ratio. Exp. Therm. Fluid Sci., 59 (2014), 11, pp 222-229.
  20. N. Kammuang Lue, et al., Correlation to predict the maximum heat flux of a vertical closed-loop pulsating heat pipe. Heat Transfer Eng., 30 (2009), 12, pp 961-972.
  21. T. Katpradit, et al., Correlation to predict heat transfer characteristics of a closed end oscillating heat pipe at critical state. Appl. Therm. Eng., 25 (2005), 14, pp 2138-2151.
  22. M. L. Rahman, et al., An experimental investigation on the effect of fin in the performance of closed loop pulsating heat pipe (CLPHP). Procedia Engineering, 105 (2015), pp 137-144.
  23. M. Li, et al., Effect of filling ratio and orientation on the performance of a multiple turns helium pulsating heat pipe. Cryogenics, 100 (2019), 6, pp 62-68.
  24. M. Ghanbarpour, et al., Thermal performance of inclined screen mesh heat pipes using silver nanofluids. Int. Commun Heat Mass, 67 (2015), 10, pp 14-20.
  25. J. Qu, et al., Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes. Int. J. Heat Mass Tran., 55 (2012), 21, pp 6109-6120.
  26. V. K. Karthikeyan, et al., Infrared thermography of a pulsating heat pipe: Flow regimes and multiple steady states. Appl. Therm. Eng., 62 (2014), 2, pp 470-480.
  27. R. T. Dobson, et al., Lumped parameter analysis of closed and open oscillatory heat pipes, in: Proceedings of the 11th International Heat Pipe Conference, Tokyo, Japan, 1999, pp 12-16.
  28. S. J. Kline, et al., Describing uncertainties in single-sample experiments, Mech. Eng. 75 (1953) pp 3-8.
  29. F. M. Shang, et al., An experimental investigation on heat transfer performance of pulsating heat pipe. J. Mech. Sci. Technol., 34 (2020), 1, pp 425-433.