THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

Authors of this Paper

External Links

online first only

Variational principle for nonlinear fractional wave equation in a fractal space

ABSTRACT
The fractal derivative is adopted to describe the nonlinear fractional wave equation in a fractal space. A variational principle is successfully established by the semi-inverse method. The two-scale method and He's exp-function are usedto solve the equation, and a good result is obtained.
KEYWORDS
PAPER SUBMITTED: 2020-03-01
PAPER REVISED: 2020-06-17
PAPER ACCEPTED: 2020-06-18
PUBLISHED ONLINE: 2021-01-31
DOI REFERENCE: https://doi.org/10.2298/TSCI200301018Y
REFERENCES
  1. He , J.H. Generalized equilibrium equations for shell derived from a generalized variational principle, Applied Mathematics Letters, 64(2017), Feb., pp. 94-100
  2. He, J.H. An alternative approach to establishment of a variational principle for the torsional problem of piezoelastic beams, Applied Mathematics Letters, 52(2016), Feb., pp. 1-3
  3. He, J.H. Generalized Variational Principles for Buckling Analysis of Circular Cylinders, Acta Mechanica, 231(2020), 899-906 doi.org/10.1007/s00707-019-02569-7
  4. He, J.H., The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators, Journal of Low Frequency Noise Vibration and Active Control, (38) 2019: pp.1252-1260
  5. He JH. Variational principle and periodic solution of the Kundu-Mukherjee-Naskar equation, Results in Physics, 17(2020), June, 103031
  6. Wang, K. L., He, C. H., A remark on Wang's fractal variational principle, Fractals, 29(2019), 8, 1950134
  7. He JH. A fractal variational theory for one-dimensional compressible flow in a microgravity space, Fractals, 28(2020), 2, Article Number:2050024
  8. Shen, Y., He, J.H. Variational principle for a generalized KdV equation in a fractal space, Fractals. 20(2020), 4, 2050069
  9. He, J.H. A short review on analytical methods for to a fully fourth-order nonlinear integral boundary value problem with fractal derivatives, International Journal of Numerical Methods for Heat and Fluid Flow, 2020, DOI (10.1108/HFF-01-2020-0060)
  10. He JH. A fractal variational theory for one-dimensional compressible flow in a microgravity space, Fractals, 28(2020), 2, 2050024 doi.org/10.1142/S0218348X20500243
  11. He, J. H., Fractal calculus and its geometrical explanation. Results in Physics, 10(2018), pp.272-276.
  12. Li XJ, Liu Z, He JH. A fractal two-phase flow model for the fiber motion in a polymer filling process, Fractals, 2020 doi.org/10.1142/S0218348X20500930
  13. Wang, Y., et al. A fractal derivative model for snow's thermal insulation property, Thermal Science, 23(2019), 4, pp.2351-2354
  14. Liu, H.Y., et al. A fractal rate model for adsorption kinetics at solid/solution interface, Thermal Science, 23(2019), 4, pp. 2477-2480
  15. He, C.H. et al. Taylor series solution for fractal Bratu-type equation arising in electrospinning process, Fractals, Vol. 28, No. 1 (2020) 2050011 DOI: 10.1142/S0218348X20500115
  16. Zhang, J.J., et al. Some Analytical Methods for Singular Boundary Value Problem in a Fractal Space, Appl. Comput. Math., 18(2019),3, pp.225-235.
  17. Wang, K.L., et.al., Physical insight of local fractional calculus and its application to fractional Kdv-Burgers-Kuramoto equation, Fractals, 27(2019), 7, 1950122.
  18. Wang, K.L., Wang. K.J.,A modification of the reduced differential transform method for fractional calculus, Thermal Science, 22(2018),4, pp.1871-1875
  19. Wang, K.L, Yao, S.W., Numerical method for fractional ZAKHAROV-KUZNETSOV equations with He's fractional derivative. Thermal science, 23(2019),4, pp.2163-2170.
  20. Bekir, A., Boz, A. Exact Solutions for a Class of Nonlinear Partial Differential Equations using Exp-Function Method, Int. J. Nonlinear Sci. Num., 8(2007),505-512
  21. He, J.H., Ain, Q.T. New promises and future challenges of fractal calculus: from two-scale Thermodynamics to fractal variational principle, Thermal Science, 24(2020), 2A, pp. 659-681
  22. He, J.H., Ji, F.Y. Two-scale mathematics and fractional calculus for thermodynamics, Therm. Sci., 23(2019), 4, pp. 2131-2133
  23. Ain, Q.T, He, J.H. On two-scale dimension and its applications, Thermal Science, 23(2019), 3B, pp. 1707-1712
  24. He, J.H. Thermal science for the real world: Reality and challenge, Thermal Science, 24(2020), 4, pp.2289-2294
  25. He, J.H. Exp-function Method for Fractional Differential Equations, International Journal of Nonlinear Sciences and Numerical Simulation, 14(2013), 6, pp. 363-366
  26. Ji, F.Y., et al. A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar, Applied Mathematical Modelling, 82(2020), June, pp. 437-448
  27. He, J.H., et al. Difference equation vs differential equation on different scales, International Journal of Numerical Methods for Heat and Fluid Flow. 2020, DOI: 10.1108/HFF-03-2020-0178
  28. Zhang, S., et al. Simplest exp-function method for exact solutions of Mikhauilov-Novikov-Wang equation, Thermal Science, 23(2019), 4, pp.2381-2388
  29. He, J. H. Asymptotic methods for solitary solutions and compactons, Abstr. Appl. Anal. 2012 (2012) ,916793.
  30. He, J.H., Wu, X.H. Exp-function method for nonlinear wave equations, Chaos Soliton. Fract, 30(2006) 700-708
  31. Wu, X.H., He, J.H. Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method, Comput. Math. Applicat, 54(2007) 966-986