THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

The piecewise reproducing kernel method for the time variable fractional order advection-reaction-diffusion equations

ABSTRACT
This paper structures some new reproductive kernel spaces based on Legendre polynomials to solve time variable order fractional advection-reaction-diffusion equations. Some examples are given to show the effectiveness and reliability of the method.
KEYWORDS
PAPER SUBMITTED: 1970-01-01
PAPER REVISED: 1970-01-01
PAPER ACCEPTED: 2020-05-28
PUBLISHED ONLINE: 2021-01-31
DOI REFERENCE: https://doi.org/10.2298/TSCI200302021D
REFERENCES
  1. Saadatmandi A., et al., The Sinc-Legendre Collocation Method for a Class of Fractional Convection-diffusion Equations, Communications in Nonlinear Science and Numerical Simulation 17 (2012) , pp.4125-4136.
  2. Chen Y. M., et al., Wavelet Method for a Class of Fractional Convection-diffusion Equation with Variable Coefficients, Journal of Computational Science 1 (2010), pp. 146-149.
  3. Zhou F.Y., Xu X.Y., The Third Kind Chebyshev Wavelets Collocation Method for Solving the Time-fractional Convection Diffusion Equations, Applied Mathematics and Computation 280 (2016) , pp.11-29.
  4. Dehestani, H., et al. Fractional-order Legendre-Laguerre Functions and Their Applications in Fractional Partial Differential Equations, Applied Mathematics and Computation 336 (2018) , pp. 433-453.
  5. Tan P. Y., Zhang X. D., the Numerical Solution of Space-time Fractional Convection-diffusion Equation, Computational Mathematics 2008,30(3)305-310.
  6. He J. H., Approximate Solution of Nonlinear Differential Equations with Convolution Product Nonlinearities, Com puter Methods in Applied Mechanics and Engineering 167(1998), pp. 69-73.
  7. He J. H., Homotopy Perturbation Method: A New Nonlinear Analytical Technique, Applied Mathematics and Computation 135(2003), pp.73-79.
  8. He J. H., Wu X. H., Construction of Solitary Solution and Compacton-like Solution by Variational Iteration Method, Chaos Solitons Fractals 29(2006), pp.108-113.
  9. He J. H.,Variational Iteration Method-a Kind of Non-linear Analytical Technique: Some Examples, International Journal of Non-Linear Mechanics 34(1999), pp.699-708.
  10. He J. H., A Coupling Method of a Homotopy Technique and a Perturbation Technique for Nonlinear Problems, International journal of non-linear mechanics 35(2000), pp.37-43.
  11. He J. H., New Interpretation of Homotopy Perturbation Method, International Journal of Modern Physics B 20(2006), pp.2561-668.
  12. Jiang W., Liu N., A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model, Applied Numerical Mathematics119(2017), pp.18-32.
  13. Jiang W., Tian T., Numerical solution of nonlinear Volterra integro-differential equations of fractional order by the reproducing kernel method, Applied Mathematics Model 39(2015), pp.4871-4876.
  14. Wang Y. L., Li Z. Y., A New Method for Solving a Class of Mixed Boundary Value Problems with Singular Coefficient, Applied Mathematics and Computation 217(2010), pp.2768-2772.
  15. Wang Y. L., Temuer C. L., Using Reproducing Kernel for Solving a Class of Singular Weakly Nonlinear Boundary Value Problems, International Journal of Computer Mathematics 87(2010), pp.367-380.
  16. Jiang W., Lin Y.Z., Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space, Communications in Nonlinear Science and Numerical Simulation 16(2011), pp.3639-3645.
  17. Wang Y. L., Jia L. N., Zhang H. L., Numerical Solution for a Class of Space-time Fractional Equation in Reproducing Reproducing Kernel Space, International Journal of Computer Mathematics 96(2019), pp.2100-2111.
  18. Wang Y. L., Temuer C. L., Pang J., New Algorithm for Second-order Boundary Value Problems of Integro-differential Equation, Journal of Computational and Applied Mathematics 229(2009), pp.1-6.
  19. Wang Y. L., et al. Using Reproducing Kernel for Solving a Class of Fractional Partial Differential Equation with Non-classical Conditions, Applied Mathematics and Computation 219(2013), pp.5918-5925.
  20. Jiang W., Chen Z., Solving a System of Linear Volterra Integral Equations Using the Reproducing KernelMethod, Applied Mathematics and Computation 219(2013), pp.10225-10230.
  21. Wang, Y.L., et al., Numerical Solution of Integro-differential Equations of High Order Fredholm by the Simplified Reproducing Kernel Method, International Journal of Computer Mathematics2019(96), pp.585-593.
  22. Wu, H.C., et al. The barycentric interpolation collocation method for a class of nonlinear vibration systems, Journal of Low Frequency Noise Vibration and Active Control, 38(2019), 3-4, pp. 1504-1495
  23. Wang Y. L., Du M. J., Temuer C. L., A Modified Reproducing Kernel Method for a Time-Fractional Telegraph Equation, Thermal Science, 2017(21), pp.1575-1580.
  24. Wang Y. L., Cao X. J., X. N. Li, A New Method for Solving Singular Fourth-order Boundary Value Problems with Mixed Boundary Conditions, Applied Mathematics and Computation 2011(217), pp.7385-7390.
  25. Wang Y. L., An efficient computational method for a class of singularly perturbed delay parabolic partial differential equation, International Journal of Computer Mathematics 2011(88), pp.3496-3506.
  26. Ain, Q. T., He, J. H. On Two-Scale Dimension and Its Applications, Thermal Science, 23 (2019), 3B, pp. 1707-1712
  27. He, J. H, Ji, F. Y., Two-Scale Mathematics and Fractional Calculus for Thermodynamics, Thermal Science, 23 (2019), 4, pp. 2131-2133
  28. He, J.-H., et al.: New Promises and Future Challenges of Fractal Calculus, Thermal Science, 24(2020), 2A, pp. 659-681
  29. He, J. H., The Simpler, the Better: Analytical Methods for Non-Linear Oscillators and Fractional Oscillators, Journal Low Freq. Noise V. A., 38 (2019), 3-4, pp. 1252-1260
  30. He, J. H., A Simple Approach to 1-D Convection-Diffusion Equation and Its Fractional Modification for E-reaction Arising in Rotating Disk Electrodes, Journal of Electroanalytical Chemistry, 854 (2019), Dec.,113565
  31. He, J. H., et al. A Fractal Boussinesq Equation for Non-Linear Transverse Vibration of a Nanofiber-Reinforced Concrete Pillar, Applied Mathematical Modelling, 82 (2020), June, pp. 437-448