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This paper structures some new reproductive kernel spaces based on Legendre 
polynomials to solve time variable order fractional advection-reaction-diffusion 
equations. Some examples are given to show the effectiveness and reliability of the 
method. 
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Introduction

In this paper, we consider the following time-fractional advection-reaction-diffusion 
equation:
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where α(x,t), β1(x,t), β2(x,t), f(x,t), are known functions, and Dt
α(x,t)u(x,t) is the variable order 

Caputo derivative defined:
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The time-fractional advection-reaction-diffusion equation [1-5] has wide applications 
in thermal science, chemical engineering, and mechanics. It is almost impossible to obtain an 
analytic solution of this equation. In recent years several numerical methods have been pro-
posed, such as the variational iteration method and the homotopy perturbation method [6-11], 
the reproducing kernel method [12-15], etc. In previous work, the Taylor’s formula or Delta 
function was used to construct the reproducing kernel space [16-19], which has been proved to 
be an effective tool to solving various kinds of differential equations [20-25]. In this paper, we 
structure some new reproductive kernel spaces based on Legendre polynomials for numerical 
approach to time-fractional advection-reaction-diffusion equations. 
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Structing reproductive kernel space based on Legendre polynomials

The well-known Legendre polynomials is defined on the interval [–1, 1] and its recur-
rence formula:
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Let t = 2x – 1, we can get the following formulation:
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The Legendre polynomials has following properties:
1

0
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where Ln(x) = pn(2x – 1). The first nine terms of the polynomials of (2n +1)1/2Ln(x) are listed in 
the tab. 1. 

Table 1. The first nine polynomials of (2n + 1)1/2Ln(x) 
n (2n + 1)1/2Ln(x)
0 1
1 31/2(–1 + 2x)
2 51/2(1 – 6x + 6x2)
3 71/2(–1 + 12x – 30x2 + 20x3)
4 3(1 – 20x + 90x2 – 140x3 + 70x4)
5 111/2(–1 + 30x – 210x2 + 560x3 – 630x4 + 252x5)
6 131/2(1 – 42x + 420x2 – 1680x3 + 3150x4 – 2772x5 + 924x6)
7 151/2(–1 + 56x – 756x2 + 4200x3 – 11550x4 + 16632x5 – 12012x6 + 3432x7)
8 171/2(1 – 72x + 1260x2 – 9240x3 + 34650x4 – 72072x5 + 84084x6 – 51480x7 + 12870x8)

Theorem 1. If

 	 { }0 1 5( ), 3 ( ), 5 ( ),..., 2 1 ( )n nH Span L x L x L x n L x= +

the inner product in Hn is given:
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is reproducing kernel of H ¯n. 
 Proof. Using [21], we can prove that H ¯n is a reproducing kernel Hilbert space. Next 

we proof Kx(y) is a reproducing kernel of H ¯n for ∀u(y) ∈ H ¯n. 
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so Kx(y) is the reproducing kernel of H ¯n.
Using [11] and the reproducing kernel of H ̄n, we can get the following reproducing 

kernel spaces:
–– Space H2 = u(x)|u(x) ∈ H ¯4, u(0) = 0, H2 has the same inner product as H ¯2, and it is a repro-

ducing kernel space. Its reproducing kernel:

2 ( , ) 4 [12 15 5 ( 3 4 )]K x y xy y x y= − + − + (9)

–– Space H3 = u(x)|u(x) ∈ H ¯5, u(0) = 0, u(1) = 0, H3 has the same inner product as H ¯3, and it is 
a reproducing kernel space. Its reproducing kernel:

3 ( , ) 60( 1 ) ( 1 ) [4 7 7 ( 1 2 )]K x y x x y y y x y= − + − + − + − + (10)

–– Space H(Ω) = H2 ⊗ H3 ={u(x, t)|u(x, t) ∈ H2 ⊗ H3, u(0, t) = u(1, t) = u(x, 0) = 0} and its 
reproducing kernel:

2 3( , , , ) ( , ) ( , ), ( , ), ( , )K x t y s K x y K t s x y t s= × ∈Ω (11)
where K2(x, y), K3(x, y) are given in eqs. (9) and (10), respectively. 

Pricewise reproducing kernel method

Put:
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where 
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where βik are the coefficients resulting from Gram-Schmidt orthonormalization.
Theorem 2. If A–1 exists and{xi, ti}∞

i=1 is denumerable dense points in Ω:
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is an analytical solution of eq. (14).
In view of eq. (16), an approximate solution of eq. (14) can be expressed:
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However, the direct application of eq. (14) could not have a good numerical accuracy. 
In order to solve this problem, we use the piecewise reproducing kernel method [21-23]. 

Numerical simulation

In this section, some numerical tests are given to demonstrate the accuracy of the 
present method.

Example 1. We consider the following time fractional advection-reaction-diffusion 
equation:
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The exact solution is uT(x, t) = 6x2(1 + 2x)(1 + t)2. Numerical results of Example 1 are 
shown in tab. 2.

Table 2. Comparison of absolute errors obtained by 
present method for Example 1 at t = 0.005

x Exact solution
α = 0.5

Traditional RKM
α = 0.5
h = 1

Present method
α = 0.5

h = 0.0001

Present method
α = 0.6

h = 0.0000000001     

0.1 0.0727218 5.197 ⋅ 10–3 4.523 ⋅ 10–5 1.753 ⋅ 10–10

0.2 0.3393680 7.315 ⋅ 10–3 8.426 ⋅ 10–5 3.502 ⋅ 10–10

0.3 0.8726620 7.074 ⋅ 10–3 1.157 ⋅ 10–4 5.103 ⋅ 10–10

0.4 1.7453200 5.198 ⋅ 10–3 1.380 ⋅ 10–4 6.411 ⋅ 10–10

0.5 3.0300700 2.407 ⋅ 10–3 1.498 ⋅ 10–4 7.281 ⋅ 10–10

0.6 4.7996400 5.768 ⋅ 10–3 1.495 ⋅ 10–4 7.568 ⋅ 10–10

0.7 7.1267400 3.031 ⋅ 10–3 1.359 ⋅ 10–4 7.129 ⋅ 10–10

0.8 10.087100 4.234 ⋅ 10–3 1.074 ⋅ 10–4 5.817 ⋅ 10–10

0.9 13.744400 3.464 ⋅ 10–3 6.259 ⋅ 10–5 3.489 ⋅ 10–10

Example 2. We consider the following time fractional advection-reaction-diffusion 
equation [1-4]:
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The exact solution is:
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Numerical results of Example 2 are shown in fig. 1 and tabs. 3 and 4. 
Example 3. We consider the following time fractional time-space fractional diffusion 

equation [5]:
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The exact solution is uT(x, t) = x2(1 – x)(1 + t2). Numerical solution of Example 3 are 
shown tab. 5. Reproducing kernels are shown in figs. 2 and 3.
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Figure 1. The left shows the approximate solutions of Example 2 for α = 0.5, N = 2,  
the right shows the absolute errors of Example 2 for α = 0.5, N = 2

Table 3. Comparison of absolute errors of Example 2 for α = 0.5, t = 0.5

x Present method
N = 2

[1]
m = 15

[1]
m = 25

[2]
m = 32

[2]
m = 64

[3]
m = 6

0.1 1.110 ⋅ 10–16 6.994 ⋅ 10–5 6.462 ⋅ 10–6 6.093 ⋅ 10–3 1.210 ⋅ 10–3 1.110 ⋅ 10–16

0.2 0 1.721 ⋅ 10–4 1.578 ⋅ 10–5 4.843 ⋅ 10–3 1.259 ⋅ 10–3 1.110 ⋅ 10–16

0.3 0 2.472 ⋅ 10–4 2.272 ⋅ 10–5 2.750 ⋅ 10–2 1.865 ⋅ 10–3 2.220 ⋅ 10–16

0.4 2.220 ⋅ 10–16 2.912 ⋅ 10–4 2.674 ⋅ 10–5 1.937 ⋅ 10–2 7.412 ⋅ 10–3 2.220 ⋅ 10–16

0.5 0 3.004 ⋅ 10–4 2.759 ⋅ 10–5 1.000 ⋅ 10–6 1.000 ⋅ 10–6 0

0.6 2.220 ⋅ 10–16 2.760 ⋅ 10–4 2.534 ⋅ 10–5 4.359 ⋅ 10–2 7.460 ⋅ 10–3 0

0.7 2.220 ⋅ 10–16 2.213 ⋅ 10–4 2.035 ⋅ 10–5 1.734 ⋅ 10–2 1.724 ⋅ 10–3 2.220 ⋅ 10–16

0.8 2.220 ⋅ 10–16 1.440 ⋅ 10–4 1.320 ⋅ 10–5 7.750 ⋅ 10–2 4.990 ⋅ 10–3 0

0.9 0 5.026 ⋅ 10–5 4.653 ⋅ 10–6 4.443 ⋅ 10–2 1.678 ⋅ 10–2 0
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Table 4. Comparison of absolute errors obtained by present method for Example 2

(x,t)
Present 
method
α = 0.3

[3]
α = 0.3

Present 
method
α = 0.5

[3]
α = 0.5

Present  
method
α = 0.9

[3]
α = 0.9

(0.1, 0.1) 0 0 2.776 ⋅ 10–17 2.776 ⋅ 10–17 0 3.122 ⋅ 10–17

(0.2, 0.2) 1.110 ⋅ 10–16 1.110 ⋅ 10–16 5.551 ⋅ 10–16 1.110 ⋅ 10–16 2.776 ⋅ 10–17 2.220 ⋅ 10–16

(0.3, 0.3) 2.220 ⋅ 10–16 0 1.110 ⋅ 10–16 2.220 ⋅ 10–16 5.551 ⋅ 10–17 2.220 ⋅ 10–16

(0.4, 0.4) 0 0 0 1.110 ⋅ 10–16 0 1.776 ⋅ 10–15

(0.5, 0.5) 0 2.220 ⋅ 10–18 0 0 1.110 ⋅ 10–16 2.564 ⋅ 10–12

(0.6, 0.6) 0 4.440 ⋅ 10–16 0 0 1.110 ⋅ 10–16 2.700 ⋅ 10–13

(0.7, 0.7) 4.441 ⋅ 10–16 0 0 2.220 ⋅ 10–16 2.220 ⋅ 10–16 6.972 ⋅ 10–13

(0.8, 0.8) 0 0 4.441 ⋅ 10–16 0 0 3.648 ⋅ 10–13

(0.9, 0.9) 4441 ⋅ 10–16 4.440 ⋅ 10–16 8.882 ⋅ 10–16 4.440 ⋅ 10–16 0 1.209 ⋅ 10–12

Table 5. Comparison of absolute errors obtained by present method for Example 3 at α = β = 0.5, t = 0.2

x Exact solution Present method
N = 2

Present method
(h = 0.0000000001) 

N = 2

[5]
N = 6

0.1 0.0094 5.983 ⋅ 10–3 3.600 ⋅ 10–13 5.373 ⋅ 10–11

0.2 0.0333 9.996 ⋅ 10–3 1.280 ⋅ 10–12 1.021 ⋅ 10–10

0.3 0.0655 1.228 ⋅ 10–2 2.520 ⋅ 10–12 1.621 ⋅ 10–10

0.4 0.0998 1.307 ⋅ 10–2 3.840 ⋅ 10–12 2.335 ⋅ 10–10

0.5 0.1300 1.262 ⋅ 10–2 5.000 ⋅ 10–12 3.174 ⋅ 10–10

0.6 0.1498 1.115 ⋅ 10–2 5.760 ⋅ 10–12 4.142 ⋅ 10–10

0.7 0.1529 8.919 ⋅ 10–3 5.880 ⋅ 10–12 5.242 ⋅ 10–10

0.8 0.1331 6.156 ⋅ 10–3 5.120 ⋅ 10–12 6.464 ⋅ 10–10

0.9 0.0842 3.103 ⋅ 10–3 3.240 ⋅ 10–12 7.787 ⋅ 10–10
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Figure 2. Reproducing kernel of space H ¯3[0, 1] Figure 3. The set of reproducing kernel  
of space H ¯n[0, 1] with n = 1, 2,...,7
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Conclusion

In this paper, some new reproductive kernels are given. The numerical results show 
that the present method has high precision compared with traditional reproducing kernel meth-
od, and has a better convergence. Besides, the method can also be used to study other fractional 
advection-dispersion models and fractal advection-dispersion models with fractal derivatives 
[26-31]. 
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