THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

Authors of this Paper

External Links

online first only

Exact solutions of space-time fractional (2+1)-dimensional breaking soliton equation

ABSTRACT
This paper suggests a direct algebraic method for finding exact solutions of the space-time fractional (2+1)-dimensional breaking soliton equation. The solution procedure is reduced to solve a large system of algebraic equations, which is then solved by Wu's method.
KEYWORDS
PAPER SUBMITTED: 2020-04-21
PAPER REVISED: 2020-06-18
PAPER ACCEPTED: 2020-06-18
PUBLISHED ONLINE: 2021-01-31
DOI REFERENCE: https://doi.org/10.2298/TSCI200421016T
REFERENCES
  1. He, J.H., Homotopy perturbation method: a new nonlinear analytical technique , Applied Mathematics and Computation , 135(2003),1,pp.73 - 79
  2. Yu , D.N., et a l. Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators , Journal of Low Frequency Noise Vibration and Active Control, (38 ) 2 019 , 3 - 4, pp. 1540 - 15 54
  3. Kuang, W.X., et al. Homotopy perturbation method with an auxiliary term for the optimal design of a tangent nonlinear packaging system , Journal of Low Frequency Noise Vibration and Active Control, (38 ) 2019 , 3 - 4, pp. 1075-1080
  4. He , J . H . , Latifizadeh , H. A general numerical algorithm for nonlinear differential equations by the variational iteration method, International Journal of Numerical Methods for Heat and Fluid Flow , 2020, DOI :10.1108/HFF-01-2020-0029
  5. Anjum, N., He, J.H. Laplace transform: Making the variational iteration method easier , Applied Mathematics Letters, 92(2019), Jun. , pp. 134 - 138
  6. He, J. H., J in, X., A short review on analytical methods for the capillary oscillator in a nanoscale deformable tube, Mathematical Methods in the Applied Sciences, 2020 , Article DOI: 10.1002/mma.6321 , dx.doi.org/10.1002/mma.6321
  7. He, J. H., The simpler , the better: Analytical methods for nonlinear oscillators and fr actional oscillators, Journal of Low Frequency Noise Vibration and Active Control, (38 ) 2019 : pp. 1252 - 1260
  8. He , J. H. A short review on analytical methods for to a fully fourth - order nonlinear integral boundary value problem with fractal derivatives, International Journal of Numerical Methods for Heat and Fluid Flow, 2020, DOI (10.1108/HFF - 01 - 2020 - 0060)
  9. He, J.H., Notes on the optimal variational iteration method , Applied Mathematics Letters , 25(2012), 10, pp.1579 - 1581
  10. He, J.H. Exp - function Method for Fractional Differential Equations, International Journal of Nonli near Sciences and Numerical Simulation, 14(2013), 6, pp. 363 - 366
  11. Ji, F.Y., et al. A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber - reinforced concrete pillar, Applied Mathematical Modelling , 82 (2020) , June, pp. 437 - 448
  12. He, J.H., et al. Difference equation vs differential equation on different scales, International Journal of Numerical Methods for Heat and Fluid Flow. 2020, DOI: 10.1108/HFF - 03 - 2020 - 0178
  13. Zhang, S., et al. Simplest exp - function method for exact solutions of Mikhauilov-Novikov-Wang equation, Therm al Science , 23(2019), 4, pp.2381 - 2388
  14. Choi, J.H., Kim,H., Soliton solutions for the space - time nonlinear partial differential equations with fractional - orders, Chinese Journal of Physic s , 55 ( 201 7 ) ,pp.556 - 565
  15. He, J .H., et al. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus , Physics Letters A , 376(2012), 4, pp. 257 - 259
  16. He, J. H., Li, Z.B. Converting fractional differential equations into partial differential equation, Thermal Science, 16(2012), 2, pp. 331 - 334
  17. Li, Z. B., et al. Exact solution of time - fractional heat conduction equation by the fractional complex transform, Thermal Science , 16 (2012), 2 , pp. 335 - 338: 2012
  18. He, J. H . , Ain , Q . T . New promises a nd future challenges of fractal calculus: from two - scale Thermodynamics to fractal variational principle, Thermal Science, 24 (2020) , 2A, pp. 659 - 681
  19. He, J.H. , Ji, F.Y. Two - scale mathematics and frac tional calculus for thermodynamics, Therm. Sci., 23 (201 9) , 4, pp. 2131 - 2133
  20. Ain, Q.T, He, J.H. On two - scale dimension and its applications, Thermal Science, 23(2019), 3 B, pp. 1707 - 1712
  21. Wu, W . T ., Mathematics Mechanization , Science Press , Beijing , 2000
  22. Rezazadeh, H., et al. , New optical solitons of nonlinear conformable fractional Schrodinger - Hirota equation , Optic , 172(2018) ,pp.545 - 553
  23. Rezazadeh, H., et al. , New exact solutions of nonlinear conformable time - fractional Phi - 4 equation , Chinese Journal of Physics , 56 (2018) ,pp.2805 - 28 16
  24. W ang , K.L. & Yao, S.W. Numerical method for fractional Zakharov - Kuznetsov equations with He's fractional derivative, Thermal Science, 23(2019), 4, pp. 2170 - 2163
  25. He, J.H., et al. A new fractional derivative and its application to explanation of polar bear hairs , Journal of King Saud University Science, 28(201 6), 2, pp. 192 - 190
  26. He , J.H. & Li, Z.B. A fractional model for dye removal , Journal of Kin g Saud University Science, 28(2016), 1, pp. 16 - 14
  27. He, J.H. A Tutorial Review on Fractal Spacetime and Fractional Calculus , International Journal of Theoretical Physics, 53(2014), 11, pp. 3718 - 3698
  28. Wang , Q.L., et al. Fractal calculus and its application to explanation of biomechanism of polar hairs (vol 26, 1850086, 2018) , Fractals , 27( 2019), 5, Article Number : 1992001
  29. Wang , Q.L., et al. Fractal calculus and its application to explanation of biomechanism of polar hairs (vol 26, 1850086, 2018) , Fractals , 2 6 (201 8 ), 6 , Article Number : 1850086
  30. He, J. H., Fractal calculus and its geometrical explanation . Results in Physics , 2018, 10: 272 - 276 .
  31. Tian, Y., Wang, K.L. Polynomial characteristic method an easy approach to lie symmetry , Thermal Science , 24( 2020 ), 4, pp. 2629 - 2635
  32. Tian , Y . , Wang , K . - L . Conservation laws for partial differential equations based on the polynomial characteristic method , Thermal Science, 24( 2020 ), 4 , pp. 2529 - 25 34
  33. Wang, Y., et al. Using reproducing kernel for solving a class of fractional partial differential equation with non - classical conditions , Applied Mathematics and Computation , 219( 2013 ), pp. 5918 - 5925.
  34. Wang, Y., et al. New algorithm for second - order boundary value problems of integro - differential equation, Journal of Computational and Applied Mathematics , (229) 2009 , pp. 1 - 6.
  35. Zhu, L. The Quenching Behavior for a Quasilinear Parabolic Equation with Singular Source and Boundary Flux, Journal of Dynamical and Control Systems , 25(2019), 4, pp. 519 - 526
  36. Zhu, L . Complete quenching phenomenon for a parabolic p - Laplacian equation with a weighted absorption, Journal of Inequalities and Applications , 248( 2018 ), pp.1 - 16. Paper submitted : April 21 , 20 20 Paper revised : J une 1 8, 2020 Paper acce pted : J une 18, 2020