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This paper suggests a direct algebraic method for finding exact solutions of the 
space-time fractional (2+1)-dimensional breaking soliton equation. The solution 
procedure is reduced to solve a large system of algebraic equations, which is then 
solved by Wu’s method. 
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Introduction

The fractional-order non-linear partial differential equations (NPDE) arise in many 
fields like the elasticity, solid state physics, gas dynamics, material and others, the investigation 
of the exact solutions is one of the central themes in mathematics and physics. In the past de-
cades, many methods have been developed to obtain exact solutions of fractional-order NPDE. 
Some of the most important methods are the homotopy perturbation method [1-3], the varia-
tional iteration method [4-9], and the exp-function method [10-13]. 

In this paper, exact solutions of space-time fractional (2+1)-dimensional breaking 
soliton equation is considered. The solution procedure of the direct algebraic method can be 
reduced to solve a large system of algebraic equations.

The direct algebraic method with modified Riemann-Liouville derivative

In this section, we outline the main steps of the direct algebraic method with mod-
ified Riemann-Liouville derivative for finding exact solutions of fractional-order NPDE. The 
Jumaries’ modified Riemann-Liouville derivatives of fractional-order α is defined by the fol-
lowing expression [14]:
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and three important properties for the modified Riemann-Liouville derivative:
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 Consider the fractional-order NPDE in the following form:

1 2 1 2

2 2 2( ,D ,D ,D , ,D ,D ,D , ) 0t x x t x xQ u u u u u u uα α α α α α =  (1)

Step 1. The fractional complex transform is introduced:
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where c, k1, k2,..., kn are arbitrary constants, the eq. (2) transform eq. (1) into an ODE:
2 2 2

1 2 1 2( , , , , , , , , ) 0Q u cu k u k u c u k u k u′ ′ ′ ′′ ′′ ′′ =  (3)

Equation (2) is called as the fractional complex transform [14-16], and it can be ex-
plained by the two-scale fractal [17-19]. 

Step 2. Suppose that the solution of eq. (3) can be expressed:
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where Q(ξ) satisfies:
2( )=ln(A) + ( ) ( ) , 0,1Q Q Q Aξ α β ξ σ ξ′  + ≠  (5)

and bi(0 ≤ i ≤ N) to be determined later. The N can be determined by balancing the highest order 
derivative terms with the non-linear terms of the highest order in eq. (3).

Step 3. Substituting eq. (4) along with eq. (5) into eq. (3) and equating all the coeffi-
cients of same power of Q(ξ) to zero, we obtained a system of algebraic equations, the obtaining 
system can be solved to find the value of c, k1, k2,..., kn, bi(0 ≤ i ≤ N). 

Fractional (2+1)-dimensional breaking soliton equation 

In this section, we consider the space-time fractional (2+1)-dimensional breaking 
soliton equation [20]: 
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By the fractional complex transform [14-19]: 
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where c, k, l are arbitrary constants with c, k, l ≠ 0. Equation (6) can be written:
2 4 4 0cu ak lu akuv akvu

lu kv
′ ′′′ ′ ′ + + + =

 ′ ′=
(8)

from lu′ = kv′, we can obtain v = (l/k)u, and eq. (8) can be converted:
2 8 0cu ak lu aluu′ ′′′ ′+ + = (9)
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integrating eq. (9) once, we get:
2 2'' 4 0cu ak lu alu+ + = (10)

Suppose that the solution of eq. (10) can be expressed:
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where bi(0 ≤ i ≤ N) are constants to be determined, such that bN ≠ 0. 
 Consider the homogeneous balance between the highest order derivative and non-lin-

ear term in eq. (10), we have N = 2, then eq. (10) has the following solutions:
2

0 1 2 2( ) ( ) ( ) , 0u b b Q b Q bξ ξ ξ= + + ≠ (12)

substituting eq. (12) along with eq. (5) into eq. (10) and collecting all the terms with the same 
power of Q(ξ) together, equating each coefficient to zero, yields a set of algebraic equations. 
Solving algebraic equations with the aid of Wu’s method [21], we have two sets of solutions:
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We consider only the solution with respect to Case 1, the other solution can be ob-
tained in a similar way:
–– when β2 – 4ασ < 0 and σ ≠ 0 
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–– when β2 – 4ασ > 0 and σ ≠ 0 
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–– when ασ > 0 and β = 0:
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–– when ασ < 0 and β = 0
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Remark 1. The generalized hyperbolic and triangular functions are defined [22, 23]: 
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where ξ is an independent variable and p, q > 0.
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Conclusion

In this paper, we use the direct algebraic method combined with Wu’s method to 
solve the space-time fractional (2+1)-dimensional breaking soliton equation, this process can 
be reduced to solve a large system of algebraic equations, which is hard to solve, then we use 
Wu’s method to solve the algebraic equations. The results show the effectiveness of this meth-
od, which can be also extended to other fractional differential equations with different defini-
tions for fractional derivative, especially He’s fractional derivative [24-27], and fractal calculus  
[28-30]. Additionally Lie symmetry and conservation laws for fractional partial differential 
equations [31-33] and integro-differential equations [34], and quenching phenomenon [35, 36] 
will be the research frontier in future. 
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