THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

APPLICATION OF HE’S FRACTIONAL DERIVATIVE AND FRACTIONAL COMPLEX TRANSFORM FOR TIME FRACTIONAL CAMASSA-HOLM EQUATION

ABSTRACT
In this article He’s fractional derivative is studied for time fractional Camassa-Holm equation. To transform the considered fractional model into a differential equation, the fractional complex transform is used and He’s homotopy perturbation method is adopted to solve the equation. Physical understanding of the fractional complex transform is elucidated by the two-scale fractal theory.
KEYWORDS
PAPER SUBMITTED: 2019-09-30
PAPER REVISED: 2019-11-15
PAPER ACCEPTED: 2019-11-20
PUBLISHED ONLINE: 2019-12-22
DOI REFERENCE: https://doi.org/10.2298/TSCI190930450A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2020, VOLUME 24, ISSUE Issue 5, PAGES [3023 - 3030]
REFERENCES
  1. Wang, Q. L., et al., Fractal calculus and its application to explanation of biomechanism of polar bear hairs, Fractals 26 (2018), article number:1850086
  2. He, J.-H., A tutorial review on fractal space time and fractional calculus, Int. J. Theor. Phys.,53 (2014), pp. 3698-718
  3. He, J.-H., A New Fractal Derivation, Therm. Sci., 15 (2011), Suppl. 1, pp. S145-S147
  4. Camassa, R., Holm, D.D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 11, pp. 1661-1664
  5. Liu, F. J., et al., He's Fractional Derivative for Heat Conduction in a Fractal Medium Arising in Silkworm Cocoon Hierarchy, Therm. Sci., 19 (2015), 4, pp. 1155-1159
  6. He, J.-H., et al., Geometrical Explanation of the Fractional Complex Transform and Derivative Chain Rule for Fractional Calculus, Phys. Lett. A, 376 (2012), 4, pp. 257-259
  7. Li, X.X., et al., A fractal modification of the surface coverage model for an electrochemical arsenic sensor, Electrochim Acta 296 (2019), pp.491-493
  8. Wang, Y., Deng, Q., Fractal derivative model for tsunami travelling, Fractals, 27 (2019), 1, article number: 1950017
  9. Wang, K.-L., Liu S-Y., He's Fractional Derivative and its Application for Fractional Fornberg-Whitham Equation, Therm. Sci., 21 (2017), 5, pp. 2049-2055
  10. Wang ,Y., An, J. Y., Amplitude-frequency relationship to a fractional Duffing oscillator arising in microphysics and tsunami motion, J. Low Freq. Noise V. A., 38 (2019), 3-4, pp. 1008-1012
  11. He, J.-H., Fractal calculus and its geometrical explanation. Results Phys., 10 (2018), pp.272-276
  12. He, J.-H., Exp-Function Method for Fractional Differential Equations, Int. J. Nonlinear Sci., 14 (2013), 6, pp. 363-366
  13. He, J.-H., A Short Remark on Fractional Variational Iteration Method, Phys. Lett. A, 375 (2011), 38, pp. 3362-3364
  14. Liu, J. F., Modified Variational Iteration Method for Varian Boussinesq Equation, Therm. Sci., 19 (2015), 4, pp. 1195--1199
  15. He, J.-H., et al., A new fractional derivative and its application to explanation of polar bear hairs, J. King Saud Univ. Sci., 28 (2016), 2, pp. 190-192
  16. He, J.-H., Li, Z.B., A fractional model for dye removal, J. King Saud Univ. Sci., 28 (2016), 1, pp. 14-16
  17. Liu, H.Y., et al., A fractional nonlinear system for release oscillation of silver ions from hollow fibers, J. Low Freq. Noise V. A., 38 (2019), 1, pp.88-92
  18. Ren, Z.F., et al., He's multiple scales method for nonlinear vibrations, J. Low Freq. Noise V. A., 38 (2019), 3-4, pp. 1708-1712
  19. Yang, J.J., Wang, S.Q., An improved homotopy perturbation method for solving local fractional nonlinear oscillators, J. Low Freq. Noise V. A., 38 (2019), 3-4, pp. 918-927
  20. Baleanu, D., et al., A modification fractional variational iteration method for solving non--linear gas dynamic and coupled Kdv equations involving local fractional operators, Therm. Sci., 22 (2018), pp. S165--S175
  21. He J.-H., Ji, F.Y., Taylor series solution for Lane-Emden equation, J. Math. Chem., 57 (2019), 8, pp. 1932-1934
  22. He, J.-H. The simplest approach to nonlinear oscillators, Results Phys., 15 (2019): 102546, DOI:10.1016/j.rinp.2019.102546
  23. Wang,Y., et al., A variational formulation for anisotropic wave traveling in a porous medium, Fractals 27 (2019), 4, article number: 1950047
  24. Wang, K.L., He, C.H., A remark on Wang's fractal variational principle, Fractals, DOI: doi.org/10.1142/S0218348X19501342
  25. He, J.-H., A modified Li-He's variational principle for plasma, Int. J. Numer. Method H., (2019) DOI: 10.1108/HFF-06-2019-0523
  26. He, J.-H., Lagrange Crisis and Generalized Variational Principle for 3D unsteady flow, Int. J. Numer. Method H.,, (2019), DOI: 10.1108/HFF-07-2019-0577
  27. He, J.-H.,, Sun, C., A variational principle for a thin film equation, J. Math. Chem., (2019) DOI: 10.1007/s10910-019-01063-8
  28. He, J.--H., Homotopy Perturbation Technique, Comp. Method Appl. M., 178 (1999), 3--4, pp. 257--262
  29. He, J.--H., A Coupling Method of a Homotopy Technique and a Perturbation Technique for Nonlinear Problems, Int. J. Nonlin. Mech., 35 (2000), 1, pp. 37--43
  30. He, J.--H., Application of Homotopy Perturbation Method to Nonlinear Wave Equation, Chaos, Soliton Fract., 26 (2005), 3, pp. 695--700
  31. He, J.--H., Li, Z. B., Converting Fractional Differential Equations into Partial Differential Equations, Therm. Sci. 16 (2012), 2, pp. 331--334
  32. Li, Z. B., He, J.--H., Fractional Complex Transform for Fractional Differential Equations, Math. Comput. Appl., 15 (2010), 5, pp. 970--973
  33. Li, Z. B., et al., Exact Solutions of Time fractional Heat Conduction Equation by the Fractional Complex Transform, Therm. Sci. 16 (2012), 2, pp. 335--338
  34. Ain, Q. T., He, J.-H., On two-scale dimension and its applications, Therm. Sci. 23 (2019), 3B, pp. 1707-1712, DOI: doi.org/10.2298/TSCI190408138A
  35. He J.-H., Ji F.Y., Two-scale mathematics and fractional calculus for thermodynamics, Therm. Sci. 23 (2019), 4, pp. 2131-2133, DOI: 10.2298/TSCI1904131H
  36. He J.-H., Generalized Variational Principles for Buckling Analysis of Circular Cylinders, Acta Mechanica (2019), DOI: 10.1007/s00707-019-02569-7
  37. Anjum N., He J.--H., Laplace transform: Making the variational iteration method easier. Appl. Math. Lett. 92 (2019), pp. 134--138
  38. He, J.H. A fractal variational theory for one-dimensional compressible flow in a microgravity space, Fractals (2019), doi.org/10.1142/S0218348X20500243
  39. He C.H., et al., Taylor series solution for fractal Bratu-type equation arising in electrospinning process, Fractals (2019) doi.org/10.1142/S0218348X20500115
  40. He J.-H., A simple approach to one-dimensional convection-diffusion equation and its fractional modification for E reaction arising in rotating disk electrodes, J. Electroanal. Chem. 854 (2019), Article Number: 113565, DOI: 10.1016/j.jelechem.2019.113565
  41. He J.-H., Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves, J. Appl. Comput. Mech. 6(4) (2020), DOI: 10.22055/JACM.2019.14813

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence