International Scientific Journal

Thermal Science - Online First

Authors of this Paper

External Links

online first only

On the fractional Dirac systems with non-singular operators

In this manuscript, we consider the fractional Dirac system with exponential and Mittag-Leffler kernels in Riemann-Liouville and Caputo sense. We obtain the representations of the solutions for Dirac systems by means of Laplace transforms.
PAPER REVISED: 2019-10-09
PAPER ACCEPTED: 2019-10-14
  1. Caputo, M., Fabrizio, M., A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl, 1 (2015), 2, pp. 1-13.
  2. Atangana, A., Baleanu, D., New fractional derivatives with non-local and non-singular kernel:Theory and application to heat transfer model, Thermal Science, 20 (2016), 2, pp. 763-769.
  3. Atangana, A., Baleanu, D., Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, Journal of Engineering Mechanics, 143 (2017), 5, D4016005.
  4. Gómez-Aguilar, J. F., et al., Analytical solutions of the electrical RLC circuit via Liouville-Caputo operators with local and non-local kernels, Entropy, 18 (2016), 8, pp. 402.
  5. Sun, H., Hao, et al., Relaxation and diffusion models with non-singular kernels, Physica A: Statistical Mechanics and its Applications, 468 (2017), pp. 590-596.
  6. Jarad, F., et al., On a new class of fractional operators, Advances in Difference Equations, 1 (2017), pp. 247.
  7. Uğurlu, E., Baleanu, D., Taş, K., On the solutions of a fractional boundary value problem, Turkish Journal of Mathematics, 42 (2018), 3, pp. 1307-1311.
  8. Atangana, A., Nieto, J. J., Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Advances in Mechanical Engineering, 7 (2015), 10, pp.1-7.
  9. Abdeljawad, T., Baleanu, D., On fractional derivatives with exponential kernel and their discrete versions, Reports on Mathematical Physics, 80 (2017), 1, pp. 11-27.
  10. Abdeljawad, T., Baleanu, D., Integration by parts and its applications of a new non-local fractional derivative with Mittag-Leffler non-singular kernel, Jornal of Nonlinear Sciences and Applications, 10 (2017), 3, pp. 1098-1107.
  11. Al-Refai, M., Abdeljawad, T., Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel, Advances in Difference Equations, 2017 (2017), 1, pp. 315.
  12. Owolabi, K. M., Atangana, A., Numerical approximation of nonlinear fractional parabolic differential equations with Caputo-Fabrizio derivative in Riemann-Liouville sense, Chaos, Solitons & Fractals, 99 (2017), pp. 171-179.
  13. Abro, K. A., Memon, A. A., Uqaili, M. A., A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives, The European Physical Journal Plus, 133 (2018), 3, pp. 113.
  14. Sheikh, N. A., et al., A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid, The European Physical Journal Plus, 132 (2017), 1, pp. 54.
  15. Saad, K. M., Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system, The European Physical Journal Plus, 133 (2018), 3, pp. 94.
  16. Bas, E., et al., Comparative simulations for solutions of fractional Sturm-Liouville problems with non-singular operators, Advances in Difference Equations, 350 (2018), pp. 1-19.
  17. Bas, E., Ozarslan, R., Real world applications of fractional models by Atangana-Baleanu derivative, Chaos, Solitons & Fractals, 116 (2018), pp. 121-125.
  18. Bas, E., Metin F., Fractional singular Sturm-Liouville operator for Coulomb potential, Advances in Difference Equations, 300 (2013).
  19. Panakhov, E. S., Ercan, A., Stability problem of singular Sturm-Liouville equation, TWMS Journal of Pure and Applied Mathematics, 8 (2017), 2, pp. 148-159.
  20. Panakhov, E. S., Inverse problem for Dirac system in two partially settled spectrum, Vinity, 3304 (1981), pp. 1-29.
  21. Levitan, B. M., Sargsjan, I. S., Sturm-Liouville and Dirac Operators, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.
  22. Greiner, W., Relativistic Quantum Mechanics: Wave Equations, Springer, Berlin, 1994.
  23. Bjorken, J. D., Drell, S. D., Relativistic Quantum Mechanics, McGraw-Hill, New York, 1964.
  24. Greiner, W., Miler B., Rafelski J., Quantum Electrodynamics of Strong Fields, Springer, Berlin, 1985.
  25. Podlubny, I., Fractional differential equations, Elsevier, San Diego, United States, 1998.