Ercan, A.: On the Fractional Dirac Systems with Non-Singular Operators
THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 6, pp. S2159-S2168 S2159

ON THE FRACTIONAL DIRAC SYSTEMS WITH
NON-SINGULAR OPERATORS

by

Ahu ERCAN*

Department of Mathematics, Firat University, Elazig, Turkey

Original scientific paper
https://doi.org/10.2298/TSCI190810405E

In this manuscript, we consider the fractional Dirac system with exponential and
Mittag-Leffler kernels in Riemann-Liouville and Caputo sense. We obtain the rep-
resentations of the solutions for Dirac systems by means of Laplace transforms.
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Introduction

The aim of fractional derivatives has been used in many real world problems with
great success. This led to new fractional definitions. Recently, fractional derivative with expo-
nential kernel was defined by Caputo and Fabrizio [1]. It was followed by some related the-
oretical and applied results in [2, 3]. Definition of fractional derivative having Mittag-Leffler
kernel was given by Atangana and Baleanu [4]. These new definitions give more precise results
in some modelling problems because of having non-singularity in its kernels.

Some modelling problems and its solution methods having fractional operator with
exponential kernel was considered by Baleanu et a/l. in [2, 5-7], Al-Refai and Abdeljawad
[8] Owolabi and Atangana [9]. Baleanu et al. studied operator with Mittag-Leffler kernel in
[10-12]. The comparisons of these two new definitions were studied by Abro et al. [13], Sheikh
et al. [14], Saad et al. [15], and Bas et al. [16-18].

Dirac equation has a big importance in the modern field of atomic physics and its
emergence began in 1928 while searched for a relativistic covariant wave equation of the
Schrodinger form. Dirac equation expresses a wave equation for spin-1/2 particles [19]. A rel-
ativistic particle of spin-1/2 at high velocities corresponds to Dirac equation. Dirac equation
expresses the position of electrons in a sense convenient with special relativity, needs that elec-
trons have spin 1/2, and presuming the existence of an antiparticle partner to the electron (the
positron). It is very important in the physics and mathematics, such that it is a first-order matrix
linear differential equation whose solution is a 4-component wave function (a spinor) [19-21].

Let L denote a matrix operator:
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where m is the mass of a particle and V(x)is a potential function. Then consider the equation:

(Bi+L—ley:0
dx

where 4 is a parameter and:

oo e[ Y[

is equivalent to a system of two simultaneous first-order ordinary differential equations:
dy, (x, A)
dx
dyl X, ﬂ

+[V (x)+m]y (x,2)= 25 (x.2),

[V m]y2 (x,l):/lyz (x,/l)

Major results for the classical spectral problem for Dirac operator are included the
representations of the solutions, asymptotic behaviours of the eigenvalues, the eigen-vec-
tor-functions and the norming constants, the ortogonality of the eigenfunctions, the reality of
the eigenvalues and this kind of approach is called as direct problem. This type of problems
were studied in [22-24].

In this study, we consider fractional Dirac systems within non-singular operators. We
derive the representations of solutions for Dirac systems by using Laplace transforms. Our this
approachment will give rise to a lot of open problems in direct and inverse problems for Dirac
system in the spectral theory.

Preliminaries

Definition 1. [1] The left and right sided fractional derivatives in Caputo (C) sense
with exponential kernel are defined:

l-a l-a
M(a)d! (1
crepya p(p) = %) 4 % (5o
Dy /()= dtJ;f(s)expL_a(s t)]ds
left and right derivatives in the Riemann-Liouville (RL) sense:
M(a)d | -a
DU (1) =——— ——(t—s)|ds
0 ()= L] (e (=) @

where '€ H'(a, b), a <b, a € [0, 1], and:

TEDEF (1) = ]1Ma djf exp|:1 (s—t)}ds

where M(a) > 0 is a normalization function with M(0) = M(1) = 1.
Definition 2. [1] Left and right fractional integrals for fractional derivatives with ex-
ponential kernel are defined, respectively by:

l-a

I f(n)= " f(e)+
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1o r (1) =%f(t)+ﬁj‘f(s)ds

Definition 3. [4] Left and right sided fractional derivatives having Mittag-Leffler ker-
nel in C sense are defined, respectively:

wepe ()= 210, [l_—a(t—s)a}ds

I-a -a
3)
C @ __B(a)b ’ —U
Dy f(t)= a .!.f (s)E, _a(s—t) ds
left and right derivatives in RL sense:
ABR & B(O() d | —a a
D == E | ——(t=s)" |ds
()= 1 G O [es) @
where '€ H'(a, b), a <b, a € [0, 1], and:
ABRDa — a dS
- dt'[f { t) }

where B(a) > 0 is a normalizatio n function with B(0) = B(1) = 1.
Definition 4. [12] Left and right fractional integrals for fractional derivative with Mit-
tag-Leffler kernel are defined, respectively:

SIS0 s s I )
(0= s ()5l 1)

Theorem 5. [1, 9] The fractional Laplace transforms of with exponential kernel (1)
and (2) are defined:

L{CZRDaf(t)}(s) — AII_(Z) S[’{f(to)l}(s) (5)
s+1—0[
e )0y = AL )M e L ©
s+1_a S+1—a

Theorem 6. [2] The fractional Laplace transforms with Mittag-Leffler kernel (3) and
(4) are defined:

e[ (o)) (s) = ELA LV H0)

-« « a (7
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B(a) S“E{f(t)}(s)—s“’lf(a)

ABC Da —
L{De £ (1)} (s) I .. a (8)
-«
Definition 7. [17] The convolution of f{¢) and g(¢) is defined:
(/=) jf (t=s)ds, f.g : [0,0) > )
Definition 8. [25] Mittag-Leffler function E4(z) is defined:
© Zk 5
E(z)= —— C,R 0
é(z) ;F(&k-}-l) |:Z€ e( )> :| (10)
and Mittag-Leffler function with two parameters is defined:
© Zk
E; = ——— |2z60ecC,Re(5)>0
é,H(Z) ;r(§k+9) [Z € e( )> :| (11)

Property 9. [17] Inverse Laplace transforms of some special functions are given:

A
/:l{ ! }zté‘-lE&,&(_até)

s +a

Property 10. [17] The following equality is hold:
Li(r=e) 0= £{s (0} £{g (1))

Main results

In this section, firstly we deal with fractional Dirac systems involving exponential
kernel in RL and C sense. Secondly, we consider fractional Dirac systems having Mittag-Leffler
kernel in RL and C sense. Then, we obtain the representations of solutions for Dirac systems by
Laplace transforms. Assume that /(x) = p(x)yi(x) and g(x) = r(x)y,(x).

Theorem 11. Let’s consider fractional Dirac system involving exponential kernel in
RL sense:

CFLf_{ CgRDayZ() p() () lyl(x),XE[O,n],neR+ 12)

D () () 2 (%) = 20 ()

where 0 < a < 1, p(x), and r(x) are real valued continuous functions on [0, n]. Then, the repre-
sentations of solutions of the system (12) are given by:

[M{@)-a) 5(x) |
N (x’/l) _I:M2 (a)+ﬂ,2 (1—0()2
e [(~a+2Aa-0ad) A +(a-1 aM (a)+aM’(a)]

’ 2M () Ai -
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e [(_a+2(oz—1)62)/12;4(‘("0:)21.’1 @M (a)+aM (a)]}(x)yz (x)+
A(l-a) &(x) _ealx[(a_l)zlz_(1_2(0[_1)&1)M2(0!):|+
M (a)+ 2 (1-a)’ ML)

[ M@)-aysx)
W2 (XJ‘) _[ IVE (a)+ﬂ,2 (1—0{)2
e [(—a +2(a-1)a ) A’ +(a -1’ 2’aM (a)+aM* (a)] +
2M (&) i
+ (a2, )/122;1(?05_)1]);/12&2]‘4 (a)+a,M’ (a)]]P(x)yl (x)+
+ A(l-a) 8(x) ~ e [(0‘—1)342 ~(1-2(a-1)a)m’ (a)} +
M (a)+A*(1-a)’ 2M (a)i

L @2 —(1-2(a-1)a ) (aﬂ]r(ﬂyz (x)

2M (a)i
where

o “Va(l-a)+aiM (a)i

1

- —lza(l—a)—alM(a)i

2 2 7 0 BT 2 2 2 (13)
M (a)—i—ﬁ (l—a) M (a)—i—ﬁ (l—a)

Proof. By applying Laplace transforms on both side of the eq. (12) and using Theorem
5, we find that:

M) s
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Now, applying the inverse Laplace transform to the eqs. (14) and (15) and using con-
volution theorem, we can obtain the representations of solutions, of the system (12).

Theorem 12. Let’s consider fractional Dirac system with exponential kernel in C sense:
crpfe S D%y, (x)+ p(x) 3 (x) =4y (x), x€[0,n],neR"
? -TCDy, (x)-i—r()c)y2 (x):/lyZ (x)
where 0 < a <1, p(x), and r(x) are real valued continuous functions on [0, n]. Then, the repre-
sentations of solutions of system (16) are given by:

(@™ ~a,e™ )M (a)| (a=1) 2 +M* () ¢

(16)

5 ()= 2adi !
+[a(dl —1)—&116“ +[a(1—d2)+é2]eaz"c2 .
2ai
| M@)(1-a)5(x) " [(ca+2Aa-Da)2 +(@=1'LaM (a)+aM ()]
M (a)+2*(1-a) 2M (@) Ai

_eﬁzx [(_a+2(a—1)d2)12 +(a_1)2/12d2M(0[)+&2M3 (a)J:lr(x)y (x)+

2M () Ai

+

+[ Al-a)s(x) < [@=-D2 -(1-2(a=1)a )M’ («)]

M?(a)+2* (1-a) 2M (a)i

e [(a-1’ 2 -(1-2(a-1)a,) M’ (a)]
2M (a)i

+ }p(X)yl(X)
yz(x’/l):(d]ealx_dzea”)M(a)ZEEZ—l) A+M (a)]cz_
_[a(&l -1)-a,]e" +[a(1-a,)+a, |e™¢, N
2ai
_M(a)(1-a) (x) " [(a+2a-1a)2* +(@-1 PaM (a)+aM’ (o))
M (a)+ 22 (1-a) 2M (a) A

+

i [(—a+2(a—1)52)/12 +a-1Y V@M (a)+a,M’ (a)]
2M (o) Ai

+

]p(X)yl (x)+

+

{ Al-a)s(x) @02 -(1-2(a=1)a )M’ (a)]
M?(a)+2* (1-a) 2M ()i

o [(a—1)3/12 _(l_z(a—l)ﬁz)Mz (0!)1},()6)3;2 (x)

" 2M ()i
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where ¢; = y1(0), ¢2 = y2(0)
Proof. Proof can be done in a similar way to the proof of Theorem 11.
Theorem 13. Consider the fractional Dirac system involving Mittag-Leffler kernel in

C sense:
oy po) o D () + ()3 (x) = An (%)
} =Dy, (x)+r(x)y, (x) = Ay, (x)
where x[0, n], 0 < a < 1, p(x), and 7(x) are real valued continuous functions on [0, n]. Then,
representations of solutions of system (17) are given by:

: (x’l):B(a)[B (a);l(;;a) 2w (B () s ()]

(1-a)[ B (a)+(1-a) 2] ¥,

- Py [EQ,HX (alxa )— E, , (azx“ )] +

(17

B (a)+(1-a) 22 |eyi
A I, () ()

1_ B 5 < a—1 a a

+{B(2(a‘;i(fﬁ)a)(j;)bz (1-a)Aix (alEM (alx )—aZEM (azx ))+
“[(1-a)ii+(1-a)iai+aB

el a)sza)m+a<@%Ewﬁwq_@ﬂ@ﬁﬂﬂﬂﬂhgﬂ

(1-a)2s(x)  (1—a) A’x" N N
{Bz(aﬂ(l—amz B(a)i (@0 (a3°)-aE, . (ax))

—Aaix””! (Ea,a (ax*)+E,  (a,x” )) +

(B (@)+(1-a) 2*)-(1-a) (1+2a) 25" |

: 2B(a)i (Eeia (@)= B, (@) | p(x) 2 ()
o) ZNDCTEV (o)
(1-a)(B* (a)+(1-a) A*)x%,
+ ( i ) (EG’HZ (alx“ ) -E,,_, (azx“ )) -
(32 (a)+(1- a)2 A2 )cli

- 2 (Eui(ax) =,y (ax7))+

(1-a)is(x)  (1-a) 22x" ) )
B(a)+(-a)2’  B(a)i (F,o (a3°) = :E, o (a5")) -
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—Aaix™™! (Ea’a (alxa)+ E,, (azxo‘ ))+
[“(32 (a)+(1-a) /12)—(1 ~a) (1+2a)/12x""1]

' ST (5o ) ) 510

1 B(a)S o ) )
|:B( (a?‘)i‘ (fa)a’)(xﬂ)z (l_a)llx (alEa,a (alx )_aZEa,a (azx ))+

“1[ a)di+(1- a)/10n+aB( )](

E,, (alxa )_Ea,a (azxa )):|p(x) Vi (x)
where
_—xlza(l—a)+/1aB(a)i :—Aza(l—a)—ﬂaB(a)i

4 2 7, % 2 2 92
B (a)+(1-a) 2 B (a)+(1-a) 2
Proof. Applying Laplace transform on both side of the system (17) and by the help of
Theorem 6, we find that:

B2 (a)SZa—l B(a)s”
[sc‘(l—a)m]2 1 [s“(1-a)+a]
E{(yl)}(s)z ” 2 + B o 2 E{g}(s)—
|:a(ll?(_a)§+ :|+/12 [a(l(_a)~;+ :|+/12
1;( )aal a s a)+a (18)
a)s
B )
A learal b (s)
{ B(a)s }+ 22 { B(a)s }+ e
s“(l-a)+a s“l-a)+a
BZ(a)SZa—l
[s“O-a)+al A
Ly, = s + L +
{(y )}(S) { B (@)s" }+/12 [ B(a)s” }”12 {g}(s)
s“l-a)+a s“l-a)+a
AB(a)s" . B(a)s” (19)

s“(l-a)+a '

s“(l-a)+a
2 2L ) (s)
B(a)s” N B(a)s
s“l-a)+a s“l-a)+a
in here ¢; =4(0) and ¢, = y,(0). Now, employing the inverse Laplace transform to the eqs. (18),
and (19) and by means of convolution theorem, so we can derive the representations of solu-

tions, of the system (17).
Theorem 14. Let consider fractional Dirac system with Mittag-Leffler kernel in RL sense:

cr f—{ 0Dy, (x)+ p(x) v (x) = Ay, (x)

4 - ABR a 20
=0 D%y, (x)+r(x)y2(x)=/1y2(x) (20)
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where x € [0, n], 0 <a < 1, p(x), and r(x) are real valued continuous functions on [0, 7]. Then,
representations of solutions of system (20) are given by:

(-ayis(x) _(1-a) A=

)| B ) ()

B (a)+(1-a) A’ B(a)i

—Aaix®™ (Ea,a (alx"’ ) +E,, (azx"‘ )) +

a(B*(a)+(1-a)' 4*)-(1-a)’ 2%x"" (1+2a)
- ZB)(a)i J(E (03" ) = B, (@25”)) | p ()31 () +

B (a)+(1—a)* A2 +(1-a)Aix™" (Cl]Ea!a (a]xa)—azEa,a (azx"’ ))+

xe! [(l —a)ti+(1-a)Aai+aB(a) ]
5 (

{ (1-aB)(a)5(x)

B, (ax*)E,. (azxa))]ax)yz (¥

- (“1Ea,a (a]x")—azEa,a (azx"’ ))_

| -arasw)  (1-a) A
yZ(x’/l){Bz(a)+(1—a)zz2 B(a)i

—dai—x"" (Ea,a (alx“ ) +E,, (azx‘Z )) +

(B (@)+(1-a) ) -(1-a) 225" (1+2a)

28(a)i (Eoo (@x) = E, 0 (@x?)) | r(x) 22 (%) -

+(1 - a)/lix”’l (a,Ea,a (a]xa )—azEa,a (azx“ )) +

| (-a)B(a)é(x)
B (a)+(1-a) A

x“! [(1—a)ii+(1—a)lai+a3(a)]

4 > (Ea’a (alx“)—Ea,a (azxa ))}p(x))ﬁ (x)

Proof. Proof is similar to the proof of Theorem 13.

Conclusion

In this study, we have analyzed fractional Dirac systems involving exponential and

Mittag-Leffler kernels in RL and C sense. The Laplace transforms has been employed to gain
representations of solutions for Dirac systems.
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