THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

Authors of this Paper

External Links

online first only

New general calculi with respect to another functions applied to describe the Newton-like dashpot models in anomalous viscoelasticity

ABSTRACT
In this article, we address the general derivatives and integrals with respect to another function for the first time. We consider the new perspective in anomalous viscoelasticity containing the general derivatives with respect to another functions containing the power-law, exponential, and logarithmic functions. The results are accurate and efficient in the descriptions of the complex behaviors of the materials.
KEYWORDS
PAPER SUBMITTED: 2018-09-21
PAPER REVISED: 2019-01-13
PAPER ACCEPTED: 2019-02-18
PUBLISHED ONLINE: 2019-06-08
DOI REFERENCE: https://doi.org/10.2298/TSCI180921260Y
REFERENCES
  1. Eves, H., An Introduction to the History of Mathematics, Holt, Rinehart and Winston, New York, 1964
  2. Yang, X. J., et al., Local Fractional Integral Transforms and their Applications, Academic Press, 2015
  3. Liouville, J., Memoire sur le calcul des different idles a indices quelconques, Journal de EcolePolytechnique, 13(1832), 21, pp.71-162
  4. Riemann, B., Versucheinerallgemeinen auffassung der integration und differentiation, Bernhard RiemannsGesammelteMathematischeWerke, 1847, Janvier, pp. 353-362
  5. Samko, S. G., et al., Integration and Differentiation to a Variable Fractional Order, Integral Transforms and Special Functions, 1(1993), 4, pp.277-300
  6. Osler, T. J., The Fractional Derivative of a Composite Function, SIAM Journal on Mathematical Analysis, 1(1970),2, pp.288-293
  7. Yang, X. J., et al., A New Fractional Operator of Variable Order: Application in the Description of Anomalous Diffusion, Physica A, 481(2017), pp.276-283
  8. Yang, X. J., General Fractional Derivatives: Theory, Methods and Applications, CRC Press, 2019
  9. Newton, I., Scala graduum caloris, Philosophical Transactions of the Royal Society London, 22(1701 in Latin), pp.824- 829
  10. Blair, G. S., The Role of Psychophysics in Rheology, Journal of Colloid Science, 2(1947), 1, pp.21-32
  11. Caputo, M., et al., Linear Models of Dissipation in Anelastic solids, La Rivista del Nuovo Cimento, 1(1971), 2, pp.161-198
  12. Nutting, P. G., A New General Law of Deformation, Journal of the Franklin Institute, 191(1921), 5, pp.679-685
  13. Chen, W., Time-space Fabric Underlying Anomalous Diffusion, Chaos, Solitons & Fractals, 28(2006), 4, pp.923-929
  14. Cai, W., et al., Characterizing the Creep of Viscoelastic Materials by Fractal Derivative Models, International Journal of Non-Linear Mechanics, 87(2016), December, pp.58-63