International Scientific Journal

Thermal Science - Online First

online first only

A generalized Fourier and Fick's perspective for stretching flow of burgers fluid with temperature-dependent thermal conductivity

This research addresses heat generation and mixed convection characteristics in Burgers fluid flow induced by moving surface considering temperature-dependent conductivity. The novel revised Fourier-Fick relations covering heat/mass paradoxes are introduced simultaneously. Boundary layer concept is implemented for simplification of mathematical model of considered physical problem. Compatible transformations are utilized to transform partial differential system into ordinary ones. The idea of homotopic scheme is employed to establish convergent series solutions. The mechanisms of heat/mass transportation are elaborated graphically by constructing graphs for distinct values of physical constraints. We noticed higher temperature and concentration for Fourier-Fick situations when compared with revised Fourier-Fick situations. Furthermore, an increment in variable conductivity factor yields higher temperature and related thickness of thermal layer. The obtained results are compared with available literature in a limiting manner and reasonable agreement is found.
PAPER REVISED: 2018-02-05
PAPER ACCEPTED: 2018-02-14
  1. T. Hayat, S. Ali, M. Awais and S. Obaidat, Stagnation point flow of Burgers' fluid over a 144 stretching surface, Progress in Computational Fluid Dynamics, an International Journal 13 (2013) 48-53.
  2. K. Maqbool, A. Sohail, N. Manzoor and R. Ellahi, Hall effect on Falkner-Skan boundary layer flow of FENE-P fluid over a stretching sheet, Communications in Theoretical Physics 66 147 (2016) 547-554. 148
  3. T. Hayat, M. Waqas, S. A. Shehzad and A. Alsaedi, Stretched flow of Carreau nanofluid with 149 convective boundary condition, Pramana Journal of Physics 86 (2016) 3-17.
  4. T. Hayat, R. Sajjad, R. Ellahi, A. Alsaedi and T. Muhammad, Homogeneous-heterogeneous 151 reactions in MHD flow of micropolar fluid by a curved stretching surface, Journal of 152 Molecular Liquids 240 (2017) 209-220.
  5. M. Waqas, T. Hayat, S. A. Shehzad and A. Alsaedi, Transport of magnetohydrodynamic 154 nanomaterial in a stratified medium considering gyrotactic microorganisms, Physica B: 155 Condensed Matter 529 (2018) 33-40.
  6. T. Hayat, M. Waqas, S. A. Shehzad and A. Alsaedi, Mixed convection radiative flow of 157 Maxwell fluid near a stagnation point with convective condition, Journal of Mechanics 29 158 (2013) 403-409.
  7. T. Hayat, M. Waqas, S. A. Shehzad and A. Alsaedi, On 2D stratified flow of an Oldroyd-B 160 fluid with chemical reaction: an application of non-Fourier heat flux theory, Journal of 161 Molecular Liquids 223 (2016) 566-571.
  8. A. R. Lee and A. H. D. Markwick, The mechanical properties of bituminous surfacing 163 materials under constant stress, Journal of the Society of Chemical Industry 56 (1937) 164 146-156.
  9. A. Alsaedi, F. E. Alsaadi, S. Ali and T. Hayat, Stagnation point flow of Burgers' fluid and mass 166 transfer with chemical reaction and porosity, Journal of Mechanics 29 (2013) 453-460.
  10. W. A. Khan, M. Irfan, M. Khan, A. S. Alshomrani, A. K.Alzahrani and M. S. Alghamdi, 168 Impact of chemical processes on magneto nanoparticle for the generalized Burgers fluid, 169 Journal of Molecular Liquids 234 (2017) 201-208.
  11. T. Hayat, S. Ali, M. Awais and M. S. Alhuthali, Newtonian heating in stagnation point flow of 171 Burgers fluid, Applied Mathematics and Mechanics 36 (2015) 61-68.
  12. T. Hayat, S. Ali, M. Awais and A. Alsaedi, Joule heating effects in MHD flow of Burgers fluid, 173 Heat Transfer Research 47 (2016) 1083-1092.
  13. T. Hayat, M. Waqas, S. A. Shehzad and A. Alsaedi, Mixed convection flow of a Burgers 175 nanofluid in the presence of stratifications and heat generation/absorption, The European 176 Physical Journal Plus 131 (2016) 253.
  14. T. Hayat, M. Waqas, M. I. Khan, A. Alsaedi and S. A. Shehzad, Magnetohydrodynamic flow 178 of burgers fluid with heat source and power law heat flux, Chinese Journal of Physics 55 179 (2017) 318-330.
  15. M. Khan, M. Irfan and W. A. Khan, Impact of nonlinear thermal radiation and gyrotactic 181 microorganisms on the Magneto-Burgers nanofluid, International Journal of Mechanical 182 Sciences 130 (2017) 375-382.
  16. J. B. J. Fourier, Théorie Analytique De La Chaleur, Paris, 1822.
  17. K. Daneshjou, M. Bakhtiari, H. Parsania and M. Fakoor, Non-Fourier heat conduction analysis 185 of infinite 2D orthotropic FG hollow cylinders subjected to time-dependent heat source, 186 Applied Thermal Engineering 98 (2016) 582-590.
  18. C. Cattaneo, A form of heat conduction equation which eliminates the paradox of 188 instantaneous propagation, Comptes Rendus(1958) 431-433.
  19. P. Vernotee, Les paradoxes de la theorie continue de 1 equation del la Chaleur, ComputesRendus(1958) 3154-3155.
  20. C. I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finitespeed heat conduction, Mechanics Research Communication 36 (2009) 481-486.
  21. S. Han, L. Zheng, C. Li and X. Zhang, Coupled flow and heat transfer in viscoelastic fluid withCattaneo-Christov heat flux model, Appl. Math. Lett. 38 (2014) 87-93.
  22. S. Nadeem and N. Muhammad, Impact of stratification and Cattaneo-Christov heat flux in theflow saturated with porous medium, Journal of Molecular Liquids(2016) 423-430.
  23. M. Waqas, T. Hayat, M. Farooq, S. A. Shehzad and A. Alsaedi, Cattaneo-Christov heat fluxmodel for flow of variable thermal conductivity generalized Burgers fluid, Journal ofMolecular Liquids(2016) 642-648.
  24. L. Liu, L. Zheng and X. Zhang, Fractional anomalous diffusion with Cattaneo-Christov fluxeffects in a comb-like structure, Applied Mathematical Modelling 40 (2016) 6663-6675.
  25. T. Hayat, M. I. Khan, M. Farooq, A. Alsaedi, M. Waqas and T. Yasmeen, Impact ofCattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over avariable thicked surface, International Journal of Heat and Mass Transfer 99 (2016) 702-710.
  26. W. A. Khan, M. Irfan and M. Khan, An improved heat conduction and mass diffusion modelsfor rotating flow of an Oldroyd-B fluid, Results in Physics 7 (2017) 3583-3589.
  27. M. Waqas, M. I. Khan, T. Hayat, A. Alsaedi and M. I. Khan, On Cattaneo-Christov double diffusion impact for temperature-dependent conductivity of Powell-Eyring liquid, ChineseJournal of Physics 55 (2017) 729-737.
  28. T. Hayat, M. Zubair, M. Waqas, A. Alsaedi and M. Ayub, Application of non-Fourier heat fluxtheory in thermally stratified flow of second grade liquid with variable properties, ChineseJournal of Physics 55 (2017) 230-241.
  29. T. Hayat, M. Zubair, M. Waqas, A. Alsaedi and M. Ayub, On doubly stratified chemicallyreactive flow of Powell--Eyring liquid subject to non-Fourier heat flux theory, Results inPhysics 7 (2017) 99-106.
  30. M. Zubair, M. Waqas, T. Hayat, M. Ayub and A. Alsaedi, Simulation of nonlinear convectivethixotropic liquid with Cattaneo-Christov heat flux, Results in Physics (2017) DOI:10.1016/j.rinp.2017.12.016.
  31. S.J. Liao, Beyond perturbation: introduction to homotopy analysis method, Chapman and Hall,CRC Press, Boca Raton (2003).
  32. R. Ellahi, M. Raza and K. Vafai, Series solutions of non-Newtonian nanofluids with Reynolds'model and Vogel's model by means of the homotopy analysis method, Mathematical andComputer Modelling 55 (2012) 1876-1891.
  33. T. Hayat, M. Waqas, S. A. Shehzad and A. Alsaedi, Effects of Joule heating andthermophoresis on stretched flow with convective boundary conditions, Scientia Iranica.Transaction B, Mechanical Engineering 21 (2014) 682.
  34. T. Hayat, M. Waqas, S. A. Shehzad and A. Alsaedi, A model of solar radiation and Jouleheating in magnetohydrodynamic (MHD) convective flow of thixotropic nanofluid, Journal ofMolecular Liquids(2016) 704-710.
  35. M. Waqas, M. Farooq, M. I. Khan, A. Alsaedi, T. Hayat and T. Yasmeen,Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinearstretched sheet with convective condition, International Journal of Heat and Mass Transfer,102 (2016) 766-772.
  36. B. Shen, L. Zheng, C. Zhang and X. Zhang, Bioconvection heat transfer of a nanofluid over astretching sheet with velocity slip and temperature jump, Thermal Science 21 (2017)2347-2356.
  37. M. Waqas, A. Alsaedi, S. A. Shehzad, T. Hayat and S. Asghar, Mixed convective stagnationpoint flow of Carreau fluid with variable properties, Journal of the Brazilian Society of Mechanical Sciences and Engineering 39 (2017) 3005-3017.
  38. T. Hayat, S. Qayyum, M. Farooq and A. Alsaedi, Mixed convection flow of Jeffrey fluid alongan inclined stretching cylinder with double stratification effect, Thermal Science 21 (2017)849-862.
  39. T. Hayat, Z. Hussain, M. Farooq and A. Alsaedi, MHD flow of Powell-Eyring fluid by astretching cylinder with newtonian heating, Thermal Science (2016) DOI:10.2298/TSCI150717162H.
  40. W. A. Khan, M. Irfan and M. Khan, An improved heat conduction and mass diffusion modelsfor rotating flow of an Oldroyd-B fluid, Results in Physics 7 (2017) 3583-3589.
  41. M. Hassan, A. Zeeshan, A. Majeed and R. Ellahi, Particle shape effects on ferrofuids flow andheat transfer under influence of low oscillating magnetic field, Journal of Magnetism andMagnetic Materials(2017) 36-44.
  42. M. A. Sadiq, M. Waqas and T. Hayat, Importance of Darcy-Forchheimer relation inchemically reactive radiating flow towards convectively heated surface, Journal of MolecularLiquids(2017) 1071-1077.
  43. T. Hayat, S. Qayyum, M. Waqas and B. Ahmed, Influence of thermal radiation and chemicalreaction in mixed convection stagnation point flow of Carreau fluid, Results in Physics 7(2017) 4058-4064.
  44. T. Hayat, S. Qayyum, A. Alsaedi and B. Ahmad, Significant consequences of heatgeneration/absorption and homogeneous-heterogeneous reactions in second grade fluid due torotating disk, Results in Physics 8 (2018) 223-230.
  45. N. Ijaz, A. Zeeshan, M. M. Bhatti and R. Ellahi, Analytical study on liquid-solid particlesinteraction in the presence of heat and mass transfer through a wavy channel, Journal ofMolecular Liquids(2018) 80-87.