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This research addresses heat generation and mixed convection characteristics in 
Burgers fluid-flow induced by moving surface considering temperature-dependent 
conductivity. The novel revised Fourier-Fick relations covering heat/mass para-
doxes are introduced simultaneously. Boundary-layer concept is implemented for 
simplification of mathematical model of considered physical problem. Compatible 
transformations are utilized to transform partial differential system into ordinary 
ones. The idea of homotopic scheme is employed to establish convergent series 
solutions. The mechanisms of heat-mass transportation are elaborated graphical-
ly by constructing graphs for distinct values of physical constraints. We noticed 
higher temperature and concentration for Fourier-Fick situations when compared 
with revised Fourier-Fick situations. Furthermore, an increment in variable con-
ductivity factor yields higher temperature and related thickness of thermal layer. 
The obtained results are compared with available literature in a limiting manner 
and reasonable agreement is found.
Key words: revised Fourier-Fick relations, heat generation, Burgers fluid,  

mixed convection, temperature-dependent conductivity

Introduction

Non-Newtonian liquids like toothpaste, paint, animal blood, milk, grease are naturally 
omnipresent and extensively utilized in oil exploration, food processing, medical, chemical 
and bio-chemical engineering [1-5]. The non-Newtonian liquids in general are categorized in 
rate, differential and integral types. Rate type models elaborates relaxation/retardation times 
characteristics. Burgers liquid among rate-type liquids is the generalization of Maxwell [6] and 
Oldroyd-B [7] models predominantly effective for polymers, asphalt concrete and reaction of 
asphalt [8]. Burgers model is considered and modeled utilizing distinct aspects. For illustration, 
Alsaedi et al. [9] formulated chemically reacted flow in the stagnation region of Burgers liquid. 
Thermal radiation impact in chemically reacted Burgers liquid flow towards heated surface is 
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presented by Khan et al. [10]. Hayat et al. [11-14] established homotopic solutions for Burgers 
liquid considering various aspects. Recently, heat generation and gyrotactic microorganisms 
effects in magneto mixed convective Burgers liquid are addressed by Khan et al. [15].

The traditional heat conduction relation, Fourier relation [16], communicates heat flux 
precisely to temperature gradient utilizing coefficient of thermal conductivity. Fourier relation 
is not effective for the problems which comprise high thermal gradient, absolute zero tempera-
tures, small variations in temperature and nano/micro scales in space and time [17]. Several 
theories regarding improvement in Fourier heat conduction relation have been introduced. The 
situations in microelectronic devices like high frequency heating laser pulse, combined circuit 
chips, high flux for cutting and melting of objects and in few non-homogeneous objects, the 
heat conduction through revised Fourier relation is very consequential [18, 19]. Christov [20] 
revisited the analysis of Cattaneo [18] for material-invariant formulation by including the relax-
ation time contribution comprising upper-convected Oldroyd’s derivatives. Afterwards, several 
researches in this direction have been reported, for detail see [21-30].

Keeping aforestated analyses in mind, it is noticed that energy expression through 
revised Fourier relation is reported extensively. However concentration expression by revised 
Fick relation is not yet studied. Thus our objective here in this investigation is to venture further 
in this regime by considering mixed convective Burger liquid flow bounded by moving sur-

face. Heat generation and variable conductivity aspects are 
retained in energy expression. Homotopy scheme [31-44] is 
opted for computations of non-linear systems. The outcomes 
of presented analysis are displayed and discussed.

Formulation

We aim to formulate mixed convective laminar flow of 
incompressible Burgers liquid towards moving surface subject 
to revised Fourier-Fick relations. Heat generation and thermal 
dependence choice of conductivity aspects are considered for 
energy expression formulation. Whole analysis is addressed 
by ignoring viscous dissipation and thermal radiation contri-
butions. Detailed flow assumptions can be understood through 
fig. 1. We have the following governing expressions [1]:
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Figure 1. Physical configuration
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with conditions [10]:
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Note that ( , )u v  illustrate liquid velocities in (horizontal, vertical) directions, respec-
tively, ν  – the kinematic viscosity, ρ  – the liquid density, 1 3( , )λ λ  – the relaxation/retardation 
times, 2λ  – the material variable of Burgers fluid, g – the gravitational acceleration, 1 2( , )Λ Λ  – 
the (thermal, solutal) expansion coefficients, ( , )T C  – the fluid (temperature, concentration), 
( , )T C∞ ∞  – the ambient fluid (temperature, concentration), ( , )T Cλ λ  – the (heat, mass) flux relax-
ation times, Q  – the heat absorption/generation coefficient, D – the mass diffusion, and c – the 
stretching rate. Variable conductivity in mathematical form is [7]:
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in which ,wT T T∞∆ = −  K∞ – the ambient liquid conductivity, and ε  – the small variable which 
identifies the characteristic of temperature for thermal dependence conductivity.

Letting [7]:
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equation (1) is justified automatically whereas eqs. (2)-(15) are reduced to the following forms:
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where prime ( )′  designates differentiation with respect to .η  The parameters occurring in eqs. 
(8)-(10) in non-dimensional forms can be described:
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Convergence analysis

We utilized homotopy scheme [31-44] for the development of convergent solutions. 
No doubt  -curve (s) are crucial to ensure convergence of non-linear differential systems. 
Therefore we portrayed  -curves in fig. 1 at 16th-order approximation for such objective. Flat 
portions of these curves help to achieve admissible values of ( , , )f θ φ   . From fig. 2 we found 

1.25 0.40f− ≤ ≤ − , 1.48 0.50θ− ≤ ≤ − , and 1.50 0.50φ− ≤ ≤ −  with 1 0.5,β =  2 0.2,β =  
3 0.45,β =  0.1,Nλ δ= = =  1 2 0.2,ε γ γ= = =  Sc 1.1= , and Pr 1.2.=  Furthermore, conver-

gence is also assured numerically, see tab. 1. 
Clearly eqs. (8)-(10) converge at 20th order 
approximation, respectively. Besides, pre-
sented analysis is also compared with [8] and 
reasonable agreement is found, see tab. 2.

Analysis

This portion highlights the significant 
features of various variables vs. temperature, 
θ, and concentration, ϕ. For such interest, figs. 
3-8 are constructed and described in detail. 
Figure 3 addresses the characteristics of heat 
generation ( 0)δ >  and heat absorption 
( 0)δ <  variables against .θ  Here θ  incre-
ments for 0δ >  whereas it illustrates oppo-

site impact when 0.δ <  Heat transfers promptly for 0δ >  which yield θ  enhancement. Less 
heat amount is transferred for 0δ <  which corresponds to θ  reduction. The contribution of 
Prandtl number vs. θ  is analyzed through fig. 4. Higher Prandtl number estimations results in 

Figure 2. The − curves for ,f θ , and φ

(0)f ′′
(0)θ′

(0)φ′
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lower diffusivity which consequently diminishes .θ  Figure 5 describes change in θ  for variable 
conductivity factor, ε. As expected, larger ε leads to higher θ  and associated thickness layer. In 
fact, liquid conductivity upsurges when ε  is incremented. So extra heat amount is exchanged 
from surface to material and thus θ  is enhanced. The role of 1γ  on θ  is elaborated in fig. 6. It 
is seen that larger 1γ  corresponds to non-conducting behavior due to which θ  decays. Further-
more, temperature, θ, is higher for 1 0γ =  in comparison to 1 0.γ >  Figure 7 explores Schmidt 

Table 1. Convergence analysis of series solutions for 
distinct order approximations when =1 0.5,β  =2 0.2,β  

=3 0.45,β  = = = 0.1,Nλ δ  = = =1 2 0.2,ε γ γ  =Sc 1.1, 
and =Pr 1.2

Order of approximations ′′− (0)f ′− (0)θ − '(0)φ
1 0.8985 0.6239 0.7783
5 0.8953 0.4349 0.6428
10 0.8940 0.4201 0.6461
15 0.8940 0.4192 0.6476
20 0.8940 0.4192 0.6476
30 0.8940 0.4192 0.6476
40 0.8940 0.4192 0.6476

Table 2. Comparative outcomes of 
′′(0)f  with [8] for several values of 
1β  when = = = =2 30 Nβ β λ

β1 [8] Present
0.0 1.000000 1.000000
0.2 1.051948 1.051889
0.4 1.101850 1.101903
0.6 1.150163 1.150137
0.8 1.196692 1.196711
1.2 1.285257 1.285363
1.6 1.368641 1.368758
2.0 1.447617 1.447651

Figure 3. The θ  via δ Figure 4. The θ  via Prandtl number

η η

( )θ η ( )θ η

Pr = 0.9, 1.1, 1.3, 1.5δ = –0.4, –0.2, 0.0, 0.2, 0.4

Figure 5. The θ  via ε Figure 6. The θ  via 1γ

η η

γ1 = 0.9, 1.1, 1.3, 1.5
ε = 0.0, 0.5, 1.0, 1.5

( )θ η ( )θ η



Waqas, M., et al.: A Generalized Fourier and Fick’s Perspective for Stretching Flow ... 
3430	 THERMAL SCIENCE: Year 2019, Vol. 23, No. 6A, pp. 3425-3432

number impact on  .φ  Here φ  dwindles for larger estimation of Schmidt number. In fact, 
Brownian diffusivity arises in Schmidt number expression which reduces via higher estimation 
of Schmidt number. Consequently, concentration, ϕ, reduces. Analysis for the 2γ  characteris-
tics is expressed through fig. 8. Here concentration , ϕ, diminishes when 2γ  is increased.

Figure 7. The φ  via Schmidt number Figure 8. The φ  via 2γ

η η

γ2 = 0.9, 1.1, 1.3, 1.5Sc = 0.9, 1.1, 1.3, 1.5

( )φ η ( )φ η

Final remarks

This research describes heat generation, variable conductivity and mixed convection 
characteristics in non-Newtonian (Burgers) fluid-flow towards moving surface. Revised Fou-
rier-Fick relations are considered for modeling energy and concentration expressions. We ob-
tained following significant points from the aforestated analysis:

yy Temperature, θ, rises when heat generation ( 0)δ >  and variable conductivity, ε, factors are 
enhanced.

yy Larger Prandtl number and thermal relaxation variable, γ1, correspond to θ  reduction.
yy An increment in Schmidt number and solutal relaxation variable, γ2, yield lower concentra-

tion, ϕ.
yy The situations regarding traditional Fourier-Fick relations can be retrieved by setting 

1 2 0γ γ= =  in eqs. (9) and (10).
yy Burgers fluid model corresponds to Oldroyd-B fluid model 3( 0)β = , Maxwell fluid model 

2 3( 0)β β= =  and viscous fluid model 1 2 3( 0).β β β= = =
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