THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

External Links

online first only

Hybrid lattice Boltzmann/Taguchi optimization approach for MHD nanofluid natural convection in a hemisphere cavity

ABSTRACT
In the present work, heat transfer optimization for natural convection with magneto hydrodynamic flow in the hemisphere enclosure embedded with a vertical isothermal cylinder is investigated using Taguchi method. The simulations were planned based on Taguchi's L25 orthogonal array with each trial performed under different magnetic field, heat source aspect ratio and particle volume fraction of nanofluid. The thermal lattice Boltzmann based on D3Q19 methods was purposed to simulate the flow and thermal fields. Signal-to-noise ratios analyses were carried out in order to determine the effects of process parameters and optimal factor settings. The present results provide a good approximation for choosing effective parameters of designing the thermal system.
KEYWORDS
PAPER SUBMITTED: 2017-05-09
PAPER REVISED: 2017-10-12
PAPER ACCEPTED: 2017-10-29
PUBLISHED ONLINE: 2017-11-18
DOI REFERENCE: https://doi.org/10.2298/TSCI170509217D
REFERENCES
  1. Samadiani, E., Joshi, Y., and Mistree, F., The Thermal Design of a Next Generation Data Center: A Conceptual Exposition, Journal of Electronic Packaging, 130(2008), 4, pp. 1104-1112.
  2. Karthikeyan, S., Sundararajan, T., Shet, U. S. P., and Selvaraj, P., Effect of Turbulent Natural Convection on Sodium Pool Combustion in the Steam Generator Building of a Fast Breeder Reactor, Nuclear Engineering and Design, 239(2009), 12, pp. 2992-3002.
  3. Rodriguez, I., Castro, J., Perez-Segarra, C. D., and Oliva, A., Unsteady numerical simulation of the cooling process of vertical storage tanks under laminar natural convection, International Journal of Thermal Sciences, 48(2009), 4, pp. 708-721.
  4. Moiseeva, L. A., and Cherkasov, S. G., Mathematical modeling of natural convection in a vertical cylindrical tank with alternating-sign heat flux distribution on the wall, Fluid Dynamics, 31(1996), 2, pp. 218-223.
  5. Sheremet, M. A., Unsteady conjugate thermogravitational convection in a cylindrical region with local energy source, Thermophysics and Aeromechanics, 18(2011), pp. 447-458.
  6. Chatterjee, D., and Chakraborty, S., Entropy generation analysis of turbulent transport in laser surface alloying process, Materials Science and Technology, 22(2006), pp. 627-633.
  7. Esfahani J. A., Alinejad J., Entropy generation of conjugate natural convection in enclosures: the Lattice Boltzmann Method, Journal of Thermophysics and Heat Transfer, 27(2013), 3, pp. 498-505.
  8. Naterer, G., Transition criteria for entropy reduction of convective heat transfer from micropatterned surfaces, Journal of Thermophysics and Heat Transfer, 22(2008), 2, pp. 271-280.
  9. Alquaity, A. B. S., Al-Dini, S. A., and Yilbas, B. S., Entropy generation in microchannel flow with presence of nanosized phase change particles, Journal of Thermophysics and Heat Transfer, 26(2012), pp. 134-140.
  10. Nemati, H., Farhadi, M., Sedighi, K., Fattahi, E., Darzi, A., Lattice Boltzmann simulation of nanofluid in lid-driven cavity, International Communications in Heat and Mass Transfer 37 (2010), pp. 1528-1534.
  11. Fattahi, E., Farhadi, M., Sedighi, K., Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus, International journal of thermal sciences 49 (2012), pp. 2353-2362
  12. Fattahi, E., Farhadi, M., Sedighi, K., Nemati, H., Lattice Boltzmann simulation of natural convection heat transfer in nanofluids, International Journal of Thermal Sciences 52(2012), pp.137-144
  13. MenduSubrahmanyam, S., Nagaraju, D., Praneeth Raj, K., Simulation of natural convection of nanofluids in a square enclosure embedded with bottom discrete heater, Thermal Science 2016 OnLine-First Issue 00, Pages: 314-314.
  14. Shouguang, Y., Tao, H., Kai, Z., Jianbang, Z., Shuhua, W., Simulation of flow boiling of nanofluid in tube based on LBM, Thermal Science(2017), OnLine-First Issue 00, Pages: 6-6.
  15. Sajjadi, H., Kefayati. R., Lattice Boltzmann Simulation of Turbulent Natural convection in tall enclosures, Thermal Science 19(2015), pp. 155-166
  16. Esfahani, J. A., Alinejad , J., Lattice Boltzmann simulation of viscous-fluid flow and conjugate heat transfer in a rectangular cavity with a heated moving wall, Thermophysics and Aeromechanics, 20(2013), 5, pp. 613-620.
  17. D'Orazio, A., Corcione, M., and Celata, G. P., Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition, International Journal of Thermal Sciences, 43(2004), pp. 575-586.
  18. Shu, C., Peng, Y., and Chew, Y. T., Simulation of natural convection in a square cavity by Taylor series expansion and least squares-based lattice Boltzmann method, International Journal of Modern Physics, 13(2002), pp. 1399-1414.
  19. Moparthi, A., Das, R., Uppaluri, R., Mishra, S. C., Optimization of heat fluxes on the heater and the design surfaces of a radiating-conducting medium, Numerical Heat Transfer, Part A: Applications, 56, No. 10(2009), pp. 846-860.
  20. Ajith, M., Das, R., Uppaluri, R., Mishra, S. C., Boundary Surface Heat Fluxes in a Square Enclosure with an Embedded Design Element, Journal of Thermophysics and Heat Transfer, 24, No. 4 (2010), pp. 845-849.
  21. Das, R., Mishra, S. C., Kumara, T. B., Uppaluri, R., An inverse analysis for parameter estimation applied to a non-Fourier conduction-radiation problem, Heat Transfer Engineering, 32, No. 6 (2011), pp. 455-466.
  22. Xie, J., Yuan, C., Parametric study of ice thermal storage system with thin layer ring by Taguchi method, Applied Thermal Engineering, 98( 2016), pp. 246-255.
  23. Kim, K.D., Choi, D.W., Choa, Y.H., Kim, H.T., Optimization of parameters for the synthesis of zinc oxide nanoparticles by Taguchi robust design method, Colloids Surf. APhysicochem. Eng. Asp., 311(2007), pp.170-173.
  24. Huang, C. N., Yu, C. C., Integration of Taguchi's method and multiple-input, multiple-output ANFIS inverse model for the optimal design of a water-cooled condenser, Applied Thermal Engineering, 98( 2016), pp.605-609.
  25. Nourgaliev, R. R., Dinh, T. N., Theofanous,T. G., and Joseph, D., The lattice Boltzmann equation method: theoretical interpretation, numerics and implications, International Journal of Multiphase Flow, 29(2003), 1, pp. 117-169.
  26. Mezrhab, A., Jami, M., Abid, C., Bouzidi, M., and Lallemand, P., Lattice Boltzmann modeling of natural convection in an inclined square enclosure with partitions attached to its cold wall, International Journal of Heat of Fluid Flow, 27(2006), pp. 456-465.
  27. Xuan, Y., Roetzel, W., Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf., 43(2000), pp. 3701-3707.
  28. Abu-Nada, E., Masoud, Z., Hijazi, A., Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, Int. Commun. Heat Mass, 35(2008), 5, pp. 657-665.
  29. Chon, C. H., Kihm, K. D., Lee, S. P., Choi, S. U. S., Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett., 87(2005), pp. 153107.
  30. Minsta, A. H., Roy, G., Nguyen, C. T., Doucet, D., New temperature and conductivity data for water-based nanofluids, Int. J. Therm. Sci., 48(2009), 2, pp. 363-371.
  31. Du, R., and Liu, W., A New Multiple-relaxation-time Lattice Boltzmann Method for Natural Convection, J. Sci. Comput., 56(2013), pp. 122-130.
  32. Dixit, H., and Babu, V., Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method, International Journal of Heat and Mass Transfer, 49(2006), pp. 727-739.
  33. Barakos, G., and Mitsoulis, E., Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions, International Journal for numerical methods in fluids, 18(1994), pp. 695-719.
  34. Bocu, Z., Altac, Z., Laminar natural convection heat transfer and air flow in three-dimensional rectangular enclosures with pin arrays attached to hot wall, Applied Thermal Engineering, 31(2011), pp. 3189-3195.
  35. Alinejad, J., and Fallah, K., Taguchi Optimization Approach for Three-Dimensional Nanofluid Natural Convection in a Transformable Enclosure, Journal of Thermophysics and Heat Transfer, 2016, pp. 1-7. DOI: 10.2514/1.T4894
  36. Alinejad, J., and Esfahani J. A., Taguchi design of three dimensional simulations for optimization of turbulent mixed convection in a cavity, Meccanica, 2016, pp. 1-14. DOI: 10.1007/s11012-016-0436-9