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In the present work, heat transfer optimization for natural convection with MHD flow in 
the hemisphere enclosure embedded with a vertical isothermal cylinder is investigated 
using Taguchi method. The simulations were planned based on Taguchi's L25 orthogonal 
array with each trial performed under different magnetic field, heat source aspect ratio 
and particle volume fraction of nanofluid. The thermal lattice Boltzmann based on 
D3Q19 methods was purposed to simulate the flow and thermal fields. Signal-to-noise 
ratios analyses were carried out in order to determine the effects of process parameters 
and optimal factor settings. The present results provide a good approximation for 
choosing effective parameters of designing the thermal system.
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Introduction
The main idea of this study is simulation of MHD nanofluid heat transfer natural 

convection in a hemisphere cavity. This simulation is more important in industrial and technolog-
ical applications including, electronic cooling [1], cooling of the reactors [2], heat and mass 
transfer processes in cryogenic fuel and vertical storage tanks [3]. In these works, the regimes of 
convective heat transfer in closed vertical volumes were analyzed in detail for the conditions 
when the thermal fluxes supplied to the liquid are uniformly distributed over the bottom and 
lateral surfaces. The spatial and temporal structure of convection at a sine distribution of the 
thermal flux on the lateral wall of the vertical cylinder was presented in [4]. The mathematical 
modeling of unsteady regimes of natural convection in a closed cylindrical region with a heat-
conducting shell of finite thickness was carried out in [5]. Numerous studies of various convec-
tive flow based on entropy generation minimization are reported in literature [6-9]. Chatterjee 
and Chakraborty [6] examined the numerical formulation involving Second law of thermody-
namics for entropy generation analysis of 3-D surface tension driven turbulent transport during 
laser materials processing. Esfahani and Alinejad [7] analyze the entropy generation due to 
conjugate natural convection in an enclosure. Transition criteria for entropy reduction of 
convective heat transfer from micro-patterned surfaces were reported by Naterer [8]. Entropy 
generation in micro-channel flow with presence of nanosized phase change particles was 
investigated by Alquaity et al. [9]. Recently lattice Boltzmann method (LBM) has been deveoped 
as a new tool for simulating the fluid-flow, heat transfer and other complicated physical phenom-
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ena. Compared with the traditional CFD methods, the LBM is a meso-scale modeling method 
based on the particle kinematics. It has many advantages, such as simple coding, easy implemen-
tation of boundary conditions and fully parallelism. At present the applications of LBM [10-15] 
have achieved great success in multi-phase flow, chemical reaction flow, thermal hydrodynam-
ics, suspension particle flow and MHD. Esfahani and Alinejad [16] conducted the simulation for 
viscous-fluid flow and conjugate heat transfer in a rectangular cavity by using LBM. D'Orazio et 
al. [17] and Shu et al. [18] performed the numerical calculations for the natural convection in a 
cavity. Moparthi et al. [19], Ajith et al. [20], and Das et al. [21] applied LBM to simulate the heat 
transfer problems. In these works, the significant parameters were studied in detail for choosing 
optimum parameters of different conditions. Several designs of experiments approaches have 
been applied to improve the efficiency of thermal system. A number of research studies have 
reported that the Taguchi design is an ideal method. The Taguchi approach is a simple and easy 
tool, which provides effective solutions on a design, as it emphasizes a mean performance value 
close to the target value. In this way, significant factors that have a significant impact on the 
experimental condition could be recognized and the optimal performance is determined [22-24]. 
We investigated the natural convection heat transfer of MHD flow in a 3-D cavity by means of 
Taguchi method. In this way, an L25 orthogonal array, including twenty five experiments for tree 
parameters with five levels, is used to optimize the processing factors. For this reason the thermal 
LBM with the Boussinesq approximation is employed to simulate natural convection. The effects 
of magnetic field, cylinder aspect ratio (AR), and particle volume fraction of nanofluid has been 
observed and analyzed in detail.  

Lattice Boltzmann method
The LBM is particularly successful as a numerical method for solving the different fluid 

dynamic problems [25]. The LBM is derived from lattice gas methods as an explicit 
discretization of the Boltzmann equation in the phase space is considered. The LBM is a vigorous 
numerical method, based on the kinetic theory to simulate fluid-flow and heat transfer.

Unlike the classical macroscopic approach (Navier-Stokes) the lattice Boltzmann is a 
mesoscopic model to simulate flow field. In this approach, the fluid domain is made discrete in 
uniform Cartesian cells, each one of which holds a fixed number of distribution functions (DF) 
that represent the number of fluid particles moving in these discrete directions. Hence depending 

on the dimension and number of velocity directions, there are 
different models that can be used. The present study examined 3-
D flow by using 3-D lattice with nineteen velocities (D3Q19 
model). The velocities of the D3Q19 model are shown in fig. 1. 
The LB model used in the present work is the same as that 
employed in [26]. The DF are calculated by solving the lattice 
Boltzmann equation (LBE), which is a special discretization of 
the kinetic Boltzmann equation. After introducing Bhatnagar-
Gross-Krook (BGK) approximation, the Boltzmann equation can 
be formulated [25]:

eqwhere Dt, c , t, f , F  denote lattice time step, the discrete lattice k k k

velocity in direction k, the lattice relaxation time, the equilibrium DF, and the external force in the 
direction of the lattice velocity, respectively. The equilibrium distribution function for the D3Q19 
velocity model is given by:
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Figure 1. 3-D with 19-velocities
lattice (D3Q19) model.

(1)
eqf  (x + c Δt,t + Δt) = f (x,t) +     [ f (x,t) − f (x,t)] + Δtc Fk k k k k k k

Δt
τ



where

In order to incorporate buoyancy force and magnetic forces in the model, the force term 
in eq. (1) needs to be calculated, in a vertical direction (z) as:

 

where q  and q  are the orientation of the magnetic field with z and x axis, respectively. u, v, w are z x

velocity components in the x-, y-, and z-direction. The macroscopic fluid densities and velocities 
are computed: 

For the temperature field the g distribution is: 

For the D3Q19 model, the equilibrium energy DF can be defined:

The temperature field is computed as:

Lattice Boltzmann model for nanofuid 
In order to simulate the nanofluid by the LBM, because of the interparticle potentials 

and other forces on the nanoparticles, the nanofluid behaves differently from the pure liquid from 
the mesoscopic point of view and is of higher efficiency in energy transport as well as better 
stabilization than the common solid-liquid mixture. For pure fluid in absence of nanoparticles in 
the enclosures, the governing equations are eqs. (1)-(9). However for modeling the nanofluid 
because of changing in the fluid thermal conductivity, density, heat capacitance and thermal 
expansion, some of the governed equations should be changed. The thermal diffusivity is written:

The effect of density at reference temperature is given by:
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The heat capacitance and thermal expansion of nanofluid can be given as [21]:

The viscosity of the nanofluid containing a dilute suspension of small rigid spherical 
particles is given by Brinkman model [28]:

The effective thermal conductivity of the two component entities of spherical-particle 
suspension was introduced by Chon et al. [29]:

Where Pr  and Re  are given:T T

where l  is the mean path of the fluid particle (17 nm) and k  is the Boltzmann constant. It should f b

be mentioned that, this model is based on experimental measurements of Chon et al. [29] for 
Al O  suspension in water and include the nanoparticles size and the work temperature effects. 2 3

However, Minsta et al. [30] found that this model is suitable for thermal conductivity prediction 
of both Al O  and CuO nanoparticles by experimental test.2 3

Nusselt number
Heat transfer between hot and cold walls was computed by local and mean Nusselt 

number which is given:

Turbulent natural convection modeling
In the present study the thermal lattice Boltzmann based on D3Q19 methods without 

any turbulent models was purposed to simulate the flow and thermal fields. For stable and 
convergence solution in natural convection the maximum velocity should not exceed the critical 
magnitude (u  ≤ 0.1) and the relaxation time must be as large as possible. For these reasons we max

use the scale analysis of the natural convection boundary layer to find the suitable relaxation time:

 

Proportionalities (19) and (20) can be converted to equalities using constants sc  and 1

sc . These constants could be calculated for different geometries by solving the problem in a more 2

stable condition. It should be noted that sc  and sc  are less than unity: 1 2
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(18)Nu  =       Nu  dxm l
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Figure 2. Schematic diagrams of the benchmark problem (a), and present study (b).
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Substituting u  ≤ 0.1and solving for ϑ:max

By these equations the relaxation times calculated:

 

Physical model 
The physical geometry considered in this study is shown in fig. 2. Figure 2(a) shows the 

schematic diagrams of the benchmark problem. In the present study, we consider the natural 
convection of a viscous incompressible fluid in a hemispherical enclosure, fig. 2(b), in the 
presence of a local energy source with constant temperature, T . When doing numerical c

simulation it was assumed that the thermophysical properties of the material are temperature-
independent. In the present study the flow is bounded by an enclosure with the geometric set-up,

1/2D = 5 (hd)  where denote the cavity diameter and the heat source dimension, respectively.
 

 

Curved boundary treatment 
Consider fig. 3(a) is a part of arbitrary curved wall geometry, where the black small 

circles, x , the open circles, x , and the grey circles, x , represent the boundary, the fluid region and w f b

the solid region nodes, respectively. In the boundary condition f (x ,t) is needed to perform the b

streaming steps on fluid nodes x  . The fraction of an intersected link in the fluid region Δ is defined f

by:

The standard (half-way) bounce back no-slip boundary condition always assumes a 
delta value of 0.5 to the boundary wall, fig. 3(b). Due to the curved boundaries, delta values in the 
interval of (0, 1) are now possible. Figure 3(c) shows the bounce back behavior of a surface with a 
delta value smaller than 0.5 and fig. 3(d) shows the bounce back behavior of a wall with delta 
bigger than 0.5. In all three cases, the reflected distribution function fα (x, t + Δt) at x  is unknown. f

⁓
⁓

ǁ
ǁ

ǁ
ǁΔ =

x  ‒ xf w

x  ‒ xf b

(27)

⁓

(a)                                                                   (b)
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Since the fluid particles in the LBM are always considered to move one cell length per time step, 
the fluid particles would come to rest at an intermediate node x . In order to calculate the reflected i

distribution function in node x  an interpolation scheme has to be applied. For treating velocity f

field in curved boundaries, the method is based on the method reported in [28]. To calculate the 
distribution function in the solid region fα (x ,t) based upon the boundary nodes in the fluid region, b

the bounce-back boundary conditions combined with interpolations including a one-half grid 
spacing correction at the boundaries. Then the Chapman-Enskog expansion for the post-collision 
distribution function is conducted:

where
 

 

Grid independency
For grid independency, the average Nusselt number was calculated at high Rayleigh 

numbers for different grid points. As seen in tab.1 for grid points passing from 80 × 80 × 80 to
6 9100 × 100 × 100 for Ra = 10 and from 150 × 150 × 150 to 200 × 200 × 200 for 10  , respectively, no 

considerably change in the average Nusselt number is observed (maximum variation is less than 
80.3%). According to the tab. 1, the 100 × 100 × 100 grid points was used for Ra ≤ 10  and 200 × 

9200 × 200 grid points was used only for Ra = 10 . 

⁓
⁓

Figure 3. Layout of the regularly spaced lattices and curved wall boundary; (a) overall
view, (b) Δ = 0.5, (c) Δ < 0.5, (d) Δ > 0.5
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Mesh size
6Ra = 10
9Ra = 10

40 × 40 × 40

8.815

-

100 × 100 × 100

8.845

52.374

80 × 80 × 80

8.843

-

150×150×150

-

53.116

Table 1. Effect of spatial resolution on the mean Nusselt number
at different Rayleigh number

200 × 200 × 200

-

53.264



Code validation
The numerical simulation was done by an in-house code written in FORTRAN, using 

LBM. Numerical investigations were carried out for the following values of dimensionless 
Rayleigh number, 103 < Ra < 109. The influence of the main parameters characterizing the 
process was analyzed. The obtained results are compared with the previous 2-D and 3-D 
simulations of turbulent natural convection in a square cavity [31-34]. The comparison of 
streamlines, isotherms and mean Nusselt number at the interface between the solid wall and 
gaseous cavity with previous work at different Rayleigh numbers illustrates a fine agreement that 
has been obtained (fig. 4 and tab. 2). The isotherm lines vortex indicates a change in the dominant 

heat transfer mechanism with Rayleigh number. For low Rayleigh number, isotherms are aligned 
with the temperature constant walls and slightly deviated by the flow, and the heat is transferred 
mainly by heat conduction. As Rayleigh number increases, the controlling heat transfer 
mechanism changes from conduction to convection, the shape of isotherms begins to bend in the 
bulk region. The isotherm lines become flat in the central region of the cavity. These lines are 
vertical only in thin boundary-layers near the hot and cold walls and the fluid is thermally 
arranged in different layers. In other words, the isotherms become horizontal in the cavity. 
Observing the streamlines patterns reveals wavy disturbances occurrence close to the horizontal 
adiabatic boundary specially at upper-left and bottom right corners. These patterns intensify by 
increasing Rayleigh number and finally eddies are developed. The temperature field becomes 
more and more stratified. The isotherms near the hot wall stretch upward as a result of the warm 

Table 2. Comparison of mean Nusselt number at mid-plane (x = 0.5)
with the bench-mark data
 

Rayleigh number

Present study

[31]

[32]

[33]

[34]

310

1.113

1.108

1.121

1.114

1.070

410

2.231

2.252

2.286

2.245

2.057

510

4.520

4.596

4.546

4.510

4.359

610

8.845

8.822

8.652

8.806

8.794

710

16.499

16.424

16.790

-

17.267

810

29.590

29.094

30.506

30.1

-

910

53.264

49.110

57.350

54.4

-

Alinejad, J.: Hybrid Lattice Boltzmann/Taguchi Optimization Approach for...
THERMAL SCIENCE: Year 2019, Vol. 23, No. 3B, pp. 1847-1859 1853

4 8Figure 4. Streamlines and isotherms at (a) Ra = 10 , (b) Ra = 10



fluid wake. The streamlines on the 3-D cavity show that the fluid has a tendency to flow to the 
cavity center in the X-direction. This observation cannot be distinguished in 2-D simulation. 
Finally, it should be noted that there is an excellent agreement between the present results and the 
benchmark LBM solution by Du and Liu [31] and Dixit and Babu [32] for all values of Rayleigh 
number (maximum difference is less than 8%), as well as with the CFD 2-D solutions by Barakos 
and Mitsoulis [33] and 3-D solutions by Bocu and Altac [34] (maximum difference is less than 
4%). 

Results and discussion
The effect of nanofluid and different aspect ratio

5Figure 6 shows the average Nusselt number at Gr = 2‧10  for different volume fractions 
and Hartmann number. From this figure, it can be found that, as the solid volume fraction 
increases from 0% to 5%, the Nusselt number distribution along the heated surface increases. For 
Hartmann numbers, it is obvious that the Nusselt number along the hot wall decreases, because 
by increasing the Hartmann number, the effect of convection reduces and the dominant heat 
transfer mechanism is conduction.

The streamlines, fig. 7(a), and isotherms, fig. 7(b), are observed in fig. 7. Illustrative 
5figures are shown at Gr = 2‧10  and different AR (AR = a/b) in various cases. As a result of the 

buoyancy effect, the fluid from the hot cylinder in the cavity rises and along the cold 
hemispherical wall descends. These flow circulations create many similar rolls in the cavity. By 
the natural convection mechanism the heat transports from the heated wall to the cold ambient.

Application of the Taguchi method
Taguchi method is proposed by Taguchi in 1960s. This method is widely applied for 

improving industrial product quality greatly [35, 36]. In addition to this, low trial numbers, 
obtaining the effects of process parameters on quality characteristics and their optimum levels 
has easily increased its popularity. In the present study, the effects of magnetic field, heat source 
AR and particle volume fraction of nanofluid on heat transfer rate (Nu) have been determined and 
optimum factor levels have been obtained by analyzing Taguchi method. To get more accurate in 
terms of the heat transfer rate, the Nusselt numbers over the wall of the cylinder for various 
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 Figure 6. Average Nusselt number for different volume fraction of (a) CuO-water (b) Al O -water2 3

(a)                                                                                   (b)



designated trial have been calculated. The specified factors and their levels are depicted in and 
tab. 3.
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5Figure 7. Streamlines and isotherms for different AR of heat source at Ra = 10 , Ha = 50



The number of simulation can be reduced by means of Taguchi technique, based on 
orthogonal arrays. This method uses the special design of orthogonal arrays to learn the whole 
parameters space with small number of experiments. In the present study, an L25 orthogonal 
array by three factors with five levels is chosen as shown in tab. 4. Taguchi method employs a 
signal-to-noise (S/N) ratio to measure the present variation. Also, in calculation procedure the 
effect of different control factors and their interaction was assumed. In Taguchi designs, a 
measure of robustness used to identify control factors that reduce variability in a product or 
process by minimizing the effects of uncontrollable factors (noise factors). The definition of S/N 
ratio differs according to an objective function, i.e., a characteristic value. There are three kinds of 
characteristic value: Nominal is Best (NB: n = 10 Log10 [square of mean/variance]), Smaller is 
Better (SB: n = -10 Log10 [mean of sum of squares of measured data]), and Larger is Better (LB: 
n = -10 Log10 [mean of sum squares of reciprocal of measured data]). As the maximum heat 
transfer rate (Nu) is major goal in present study, LB is chosen as a characteristic value. The S/N 
ratios plots for different factors are given in fig. 8. Higher values of the S/N ratios identify control 
factor settings that minimize the effects of the noise factors. As a result, the higher values of S/N 
for optimum settings of control factors maximizing the Nusselt number are AR = 2, Ha =10, and
ϕ = 0.05 (CuO).

The maximum Nusselt number occurs at this optimum setting because of the nature of 
fluid-flow in free convection. The fluid in cavity becomes warm and upward flow stream along 
the heat source. The curved cold wall of the cavity leads the fluid-flow to the bottom wall slowly. 
Finally, it should be noted that choosing the tall cylinder shape for the heat source terminates to 
increase the heat transfer rate. The final step in verifying results based on Taguchi design is the 
confirmation test. Numerical results indicate that the Nusselt number in the optimum case is equal 
to 2.059. It can be concluded that Taguchi method achieves the statistical assessment of 
maximum heat transfer rate of natural convection in a hemispherical enclosure embedded with 
vertical isothermal cylinder.
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Levels
No.

Factors

1/2   2/3   1   3/2   2
  1     2     3    4     5

Heat source AR

10   20   30   40   50
1     2     3     4     5

Magnetic field Ha

0.05   0.02        -       0.02   0.05
1        2          3          4         5

Nanofluid volume fraction (ϕ)
CuO        Water       Al O2 3

Table 3. Factors and their levels of simulation

Table 4. The L25 Orthogonal array with control factors

Trial No.

AR

Ha

ϕ

Nu

1

1

1

1

1.893

3

1

3

3

1.204

4

1

4

4

1.233

5 6

1

5

5

1.291

2

1

2

1.536

7 8

2

2

3

1.273

2

3

4

1.326

9

2

4

5

1.409

10

2

5

1

1.515

11

3

1

3

1.316

12 13

3

2

4

1.399

3

3

5

1.516

2

1

2

2

1.475

Trial No.

AR

Ha

ϕ

Nu

14

3

4

1

1.658

16

4

1

4

1.465

17

4

2

5

1.627

18 19

4

3

1

1.828

4

4

2

1.406

20 21

4

5

3

1.146

5

1

5

1.743

22

5

2

1

2.007

23

5

3

2

1.549

24

5

4

3

1.264

25

5

5

4

1.322

15

3

5

2

1.273



Conclusions
In this article, the effects of different parameters on natural convection heat transfer in a 

hemispherical cavity are investigated through Taguchi method. Achievement the maximum heat 
transfer rate by optimum condition is the practical benefit of this study. The simulation is 
numerically predicted by using LBM. The experiments are planned by means of Taguchi's L25 
orthogonal array under different conditions of magnetic field, heat source aspect ratio, and 
particle volume fraction of nanofluid. In conclusion, some of the main points are briefly remarked 
as follows.
• Using LBM for natural convection simulation has a simple calculation procedure in compari-

son with CFD method.
• Present study show in 3-D natural convection, fluid have tendency to flow in the x-direction of 

cavity center.
• Based on the S/N ratio plots, all control factors (Hartman number, AR, ϕ, have significant 

effect on the objective function.
• The optimum settings of control factors are the heat source aspect ratio AR = 2, magnetic field 

Ha = 10, and the particle volume fraction of nanofluid ϕ = 0.05 (CuO). 
• Confirmation test verify the maximum heat transfer rate of natural convection in a cubic 

cavity can be predicted by Taguchi method with sufficient accuracy.
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Figure 8. The S/N ratios plots for different factors
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