International Scientific Journal

Thermal Science - Online First

Authors of this Paper

External Links

online first only

Mathematical models for thermal science

PAPER REVISED: 2016-12-12
PAPER ACCEPTED: 2017-03-22
  1. El Naschie, M.S., A review of E infinity theory and the mass spectrum of high energy particle physics, Chaos Solitons and Fractals, 19(2014), No.1, pp. 209-236
  2. Fan, J., He, J.H., Biomimic design of multi-scale fabric with efficient heat transfer property, Thermal Science, 16(2012), 5, pp.1349-1352
  3. Wang, Q.L., et al., Fractal analysis of polar bear hairs, Thermal Science, 19(2015), S1, S143-S-144
  4. Liu, F.J., et al., He's fractional derivative for heat conduction in a fractal medium arising in silkworm cocoon hierarchy, Thermal Science, 19(2015), 4, 1155-1159
  5. Liu,P., et al., Facile preparation of alpha-Fe2O3 nanobulk via bubble electrospinning and thermal treatment, Thermal Science,20(2016),3,pp.967-972
  6. Ren, Z.F, et al. Effect of bubble size on nanofiber diameter in bubble electrospinning, Thermal Science,20(2016),3,pp.845-848
  7. He, C. H., et al., Bubbfil Spinning for Fabrication of PVA Nanofibers, Thermal Science, 19(2015), 2, pp. 743-746
  8. Li, Y., et al. Bubbfil electrospinning of PA66/Cu nanofibers, Thermal Science, 20(2016), 3, pp.993-998
  9. He, J. H., A Tutorial Review on Fractal Spacetime and Fractional Calculus, International Journal of Theoretical Physics, 53(2014), No.11, pp. 3698-3718
  10. Hu, Y., He, J.H., Fractal space-time and fractional calculus, Thermal Science, 20(2016), No.3, pp. 773-777.
  11. Wang, K.L., Liu, S.Y., He's fractional derivative for nonlinear fractional heat transfer equation, Thermal Science, 20(2016), No.3, pp. 793-796.
  12. Wang, K.L., Liu, S.Y., A new solution procedure for nonlinear fractional porous media equation based on a new fractional derivative, Nonlinear Science Letters A, 7(2016), No.4, pp. 135-140.
  13. Liu, F.J., et al., A fractional model for insulation clothing with cocoon-like porous structure, Thermal Science, 20(2016), No.3, pp. 779-784.
  14. Zhu, W.H., et al., An analysis of heat conduction in polar bear hairs using one-dimensional fractional model, Thermal Science, 20(2016), No.3, pp. 785-788.
  15. K. Sayevand, K. Pichaghchi, Analysis of nonlinear fractional KdV equation based on He's fractional derivative, Nonlinear Sci. Lett. A, 7(2016)77-85
  16. Cui, Q.N., et al. Analytical and numerical methods for thermal science, Thermal Science, 20(2016), No.3, pp.ix-xiv.
  17. He, J. H., Li, Z. B., Converting Fractional Differential Equations into Partial Differential Equations, Thermal Science,16(2012),2, pp.331-334
  18. Li, Z. B., et al., Exact Solutions of Time-fractional Heat Conduction Equation by the Fractional Complex Transform, Thermal Science, 16(2012) ,2,pp.335-338