International Scientific Journal

Thermal Science - Online First

online first only

Heat recovery in compost piloe for building applications

This work proposes an estimation of the possible heat recovery of self-heating compost piles for Building applications. The energy released during the aerobic composting of lignin and cellulose-based materials is computed by solving an inverse problem. The method consists first in an experimental phase with measurement of the temperature within the heap, then a numerical procedure allows for the inverse identification of the heat production due to the chemical reaction of composting. The simulation results show a good accordance with the experiments for the chosen source-term model. Comparing the results to the theoretical values for the energy released by aerobic composting provides an estimate for the efficiency of the reaction. The reached temperatures and recovered energy fit with the order of magnitude of Building needs.
PAPER REVISED: 2016-05-21
PAPER ACCEPTED: 2016-06-15
  1. European Commission. Energy Efficiency Plan 2011 Brussels, 2011a.
  2. S. Trachte, F. Salvesen. Sustainable renovation of non residential buildings, a response to lowering the environmental impact of the building sector in Europe. Energy Procedia 48 (2014), pp. 1512- 1518.
  3. Agence de l'Environnement et de Maîtrise de l'Énergie. Chiffres-clés Bâtiment 2013 (in fr). Édition ADEME Bâtiment, 2013.
  4. D. Molle, P.-M. Patry. RT 2012 et RT existant: Réglementation thermique et efficacité énergétique Construction et rénovation (in fr). Éditions Eyrolles, 2013.
  5. T.M. Sandip, K. Kanchan C, B.H. Ashok Enhancement of methane production and bio-stabilisation of municipal solidwaste in anaerobic bioreactor landfill. Bioresource Technology, 110 (2012), 7 , pp. 10-17.
  6. X. Qiyong, et al. J. Xiao, M. Zeyu, T. Huchun, K. Jae Hac Methane production in simulated hybrid bioreactor landfill. Bioresource Technology, 168 (2014), SI, pp. 92-96.
  7. E. C. Rada, et al. M. Ragazzi, S. Villotti, V. Torretta Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation. Waste Management, 34 (2014), 5, pp. 859-866.
  8. C. Allain. Energy recovery at biosolids composting facility. Biocycle, 48 (2007), 10, pp. 50-53.
  9. I. Pain, J. Pain. Les méthodes Jean Pain ou un autre jardin (8e Édition) (in fr). Les Éditions JP, 2008.
  10. A. Hatakka. Biodegradation of Lignin. Biopolymers. Biology, Chemistry, Biotechnology, Applications. Vol 1. Lignin, Humic Substances and Coal (Eds. M. Hofrichter and A. Steinbüchel). Weinheim: Wiley-VCH, 2001 , pp. 129-180.
  11. A. de Guardia, C. Petiot , JC. Benoist , C. Druilhe. Characterization and modelling of the heat transfers in a pilot-scale reactor during composting under forced aeration. Waste Management, 32 (2012), 6, pp 1091-1105.
  12. C.E. Zambra, N.O. Moraga, M. Escudey. Heat and mass transfer in unsaturated porous media: Moisture effects in compost piles self-heating. International Journal of Heat and Mass Transfer, 54 (2011), 13, pp. 2801-2810.
  13. T. Luangwilai, H.S. Sidhu, M.I. Nelson. Biological self-heating in compost piles : A Semenov formulation. Chemical Engineering Science, 101 (2013), 14, pp. 533-542.
  14. H.S. Sidhu, M. I. Nelson, X. Chen A simple spatial model for self-heating compost piles. ANZIAM Journal, 48 (2006), C, pp. 135-150.
  15. K.M.M. Hasan, G. Sarkar , M. Alamgir, QH Bari , G. Haedrich . Study on the quality and stability of compost through a Demo Compost Plant. Waste Management, 32 (2012), 11, pp. 2046-2055.
  16. G.L. Barron. Predatory fungi, wood decay, and the carbon cycle. Biodiversity, Volume 4, (2003), 1, 3-9.
  17. P. Navi, F. Heger. Comportement thermo-hydromécanique du bois (in fr). Presses polytechniques et universitaires romandes, 2005.
  18. P.H. Raven, R. Evert, S. Eichhorn. Biologie végétale (in fr). De Boeck 3rd edition, 2014.
  19. M. Dashtban, H. Schraft, T.A. Syed, W. Qin Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology, 1 (2010), 1, pp. 36-50.
  20. A.M. Abdel-Hamid, J.O. Solbiati , I.K. Cann. Insights into lignin degradation and its potential industrial applications. B. Advances in Applied Microbiology, 82 (2013), 1, pp. 1-28.
  21. Mathworks. Matlab R2012b Documentation The Mathworks, 2012.
  22. A.T. Talib, M.N. Mokhtar, A.S. Baharuddin, A. Sulaiman. Effects of aeration rate on degradation process of oil palm empty fruit bunch with kinetic-dynamic modeling. Bioresource Technology, 169 (2014), 3, pp. 428-438.
  23. R. Barrena, C. Canovas, A. Sánchez Prediction of temperature and thermal inertia effect in the maturation stage and stockpiling of a large composting mass. Waste Management, 26 (2006), 9, pp. 953-959.
  24. L.P. Walker, T.D. Nock, J.M. Gossett, J.S. VanderGheynst The role of periodic agitation and water addition in managing moisture limitations during high-solids aerobic decomposition. Process Biochemistry, 34 (1999), 6, pp. 601-612.
  25. A.S. Kalamdhad, A.A. Kazmi Effects of turning frequency on compost stability and some chemical characteristics in a rotary drum composter. Chemosphere, 74 (2009), 10, pp. 1327-1334.
  26. P. Weppen. Process calorimetry on composting of municipal organic wastes. Biomass and Bioenergy, 21 (2001), 4, pp. 289-299.
  27. G. Pagliarini, C. Corradi, S. Rainieri. Hospital CHCP system optimization assisted by TRNSYS building energy simulation tool. Applied Thermal Engineering, 44 (2009), 3, pp. 150-158.