THERMAL SCIENCE

International Scientific Journal

EXACT SOLUTIONS OF THE CUBIC BOUSSINESQ AND THE COUPLED HIGGS SYSTEM

ABSTRACT
We present explicit exact solutions of some evolution equations including cubic Boussinesq and coupled Higgs system by the unified method. The explicit solutions are expressed in terms of some elementary functions including trigonometric, exponential, and polynomial. The method is applied to a number of special test problems to test the strength of the method and computational results indicate the power and efficiency of the method.
KEYWORDS
PAPER SUBMITTED: 2020-04-05
PAPER REVISED: 2020-06-29
PAPER ACCEPTED: 2020-07-10
PUBLISHED ONLINE: 2020-10-25
DOI REFERENCE: https://doi.org/10.2298/TSCI20S1333A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2020, VOLUME 24, ISSUE Supplement 1, PAGES [S333 - S342]
REFERENCES
  1. Abdelrahman, M. A. E., Kunik, M., The Ultra-Relativistic Euler Equations, Math. Meth. Appl. Sci., 12 (2015), 1, pp. 1247-1264
  2. Abdelrahman, M. A. E., Alkhidhr, H., A Robust and Accurate Solver for Some Non-Linear Partial Differential Equations and Tow Applications, Physica Scripta, 95 (2020), 2, 065212
  3. Abdelrahman, M. A. E., et al., The Coupled Non-Linear Schrodinger-Type Equations, Modern Physics Letters B, 34 (2020), 6, 2050078
  4. Malik, R., et al., Theoretical Investigations on Propagating and Growing Modes in a Pair Plasma HavinDust Grains, Phys. Plasmas, 19 (2012), 032107
  5. M. Kaplan, et al., A Generalized Kudryashov Method to Some Non-Linear Evolution Equations in Mathematical Physics, Non-Linear Dyn., 85 (2016), June, pp. 2843-2850
  6. Wazwaz, A. M., Bright and Dark Optical Solitons for (2+1)-Dimensional Schrodinger (NLS) equations in the Anomalous Dispersion Regimes and the Normal Dispersive Regimes, Optik, 192 (2019), 162948
  7. Bhrawy, A. H., An Efficient Jacobi Pseudospectral Approximation for Non-Linear Complex Generalized Zakharov System, Appl. Math. Comput., 247 (2014), Nov., pp. 30-46
  8. Hassan, S. Z., Abdelrahman, M. A. E., Solitary Wave Solutions for Some Non-Linear Time Fractional Partial Differential Equations, Pramana J. Phys., 91 (2018), 5, pp. 91-67
  9. Abdelrahman, M. A. E., Sohaly, M. A., On the New Wave Solutions to the MCH Equation, Indian Journal of Physics, 93 (2019), Dec., pp. 903-911
  10. Abdelrahman, M. A. E., Sohaly, M. A., Solitary Waves for the Non-Linear Schrodinger Problem With the Probability Distribution Function in Stochastic Input Case, Eur. Phys. J. Plus, 132 (2017), 339
  11. Abdelrahman, M. A. E., A Note on Riccati-Bernoulli sub-ODE Method Combined with Complex Transform Method Applied to Fractional Differential Equations, Non-Linear Engineering Modelling and Application, 7 (2018), 4, pp. 279-285
  12. Zhang, J. L., et al., The Improved F-Expansion Method and Its Applications, Phys. Lett. A, 350 (2006), 1-2, pp. 103-109
  13. Wazwaz, A. M. The Extended Tanh Method for Abundant Solitary Wave Solutions of Non-Linear Wave Equations, Appl. Math. Comput., 187 (2007), 2, pp. 1131-1142
  14. Mirzazadeh, M., et al., 1-Soliton Solution of KdV Equation, Non-Linear Dyn., 80 (2015), 1-2, pp. 387-396
  15. Wazwaz, A. M., The Tanh Method for Travelling Wave Solutions of Non-Linear Equations, Appl. Math. Comput., 154 (2004), 3, pp. 714-723
  16. Fan, E., Zhang, H., A Note on the Homogeneous Balance Method, Phys. Lett. A, 246 (1998), 5, pp. 403-406
  17. Aminikhad, H., et al., Exact Solutions for Non-Linear Partial Differential Equations Via Exp-Function Method, Numer. Methods Partial Differ. Equations, 26 (2009), 6, pp. 1427-1433
  18. Ma, W.-X., et al., A Multiple Exp-Function Method for Non-Linear Differential Equations and Its Application, Physica Scripta, 82 (2010), 065003
  19. Dai. C. Q., Zhang, J. F., Jacobian Elliptic Function Method for Non-Linear Differential Difference Equtions, Chaos Solutions Fractals, 27 (2006), 4, pp. 1042-1049
  20. Wazwaz, A. M., Exact Solutions to the Double Sinh-Gordon Equation by the Tanh Method and a Variable Separated ODE Method, Comput. Math. Appl., 50 (2005), 10-12, pp. 1685-1696
  21. Yang, X. F., et al., A Riccati-Bernoulli sub-ODE Method for Non-Linear Partial Differential Equations and Its Application, Adv. Diff. Equa., 1 (2015), Dec., pp. 117-133
  22. Abdelrahman, M. A. E., Sohaly, M. A., The Development of the Deterministic Non-Linear PDE in Particle Physics to Stochastic Case, Results in Physics, 9 (2018), June, pp. 344-350
  23. Wazwaz, A. M., A Sine-Cosine Method for Handling Non-Linear Wave Equations, Math. Comput. Modelling, 40 (2004), 5-6, pp. 499-508
  24. Baskonus, H. M., Bulut, H., New Wave Behaviors of the System of Equations for the Ion Sound and Langmuir Waves, Waves Random Complex Media, 26 (2016), 4, pp. 613-625
  25. Liu, C., Exact Solutions for the Higher-Order Non-Linear Schrodinger Equation in Non-Linear Optical Fibres, Chaos, Solitons and Fractals, 23 (2005), 3, pp. 949-955
  26. Zhang, S., Exp-Function Method for Solving Maccari's System, Phys. Lett. A., 371 (2007), 1-2, pp. 65-71
  27. El Achab, A., Amine, A., A Construction of New Exact Periodic Wave and Solitary Wave Solutions for the 2-D Ginzburg-Landau Equation, Non-Linear Dyn., 91 (2017), 2, pp. 995-999
  28. Hosseini, K., et al., New Exact Traveling Wave Solutions of the Unstable Non-Linear Schrodinger Equations, Commun. Theor. Phys., 68 (2017), 6, pp. 761-767
  29. Bulut, H., et al., Optical Solitons to the Resonant Non-Linear Schrodinger Equation with Both Spatio-Temporal and Inter-Modal Dispersions under Kerr Law Non-Linearity, Optik, 163 (2018), June, pp. 49-55
  30. Akbari-Moghanjoughi, M., Energy Spectrum of Oscillations in Generalized Sagdeev Potential, Physics of Plasmas, 24 (2017), 072107
  31. Wanga, Q., et al., An Extended Jacobi Elliptic Function Rational Expansion Method and Its Application (2+1)-Dimensional Dispersive Long Wave Equation, Phys. Lett. A, 289 (2005), 5-6, pp. 411-426
  32. Daripa, P., Hua, W., A Numerical Study of an Ill-Posed Boussinesq Equation Arising in Water Waves and Non-Linear Lattices: Filtering and Regularization Techniques, Appl. Math. Comput., 101 (1999), 2-3, pp. 159-207
  33. Nagasawa, T., Nishida, Y., Mechanism of Resonant Interaction of Plane Ion-Acoustic Solitons, Phys. Rev. A, (1992), Sept., pp. 3446-3471
  34. Hafez, M. G., et al.,Traveling Wave Solutions for Some Important Coupled Non-Linear Physical Models Via the Coupled Higgs Equation and the Maccari System, Journal of King Saud University Science, 27 (2015), pp. 105-112

© 2020 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence