International Scientific Journal

Authors of this Paper

External Links


In this manuscript, we consider the fractional Dirac system with exponential and Mittag-Leffler kernels in Riemann-Liouville and Caputo sense. We obtain the representations of the solutions for Dirac systems by means of Laplace transforms.
PAPER REVISED: 2019-10-09
PAPER ACCEPTED: 2019-10-14
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2019, VOLUME 23, ISSUE Supplement 6, PAGES [S2159 - S2168]
  1. Caputo, M., Fabrizio, M., A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl, 1 (2015), 2, pp. 1-13.
  2. Atangana, A., Baleanu, D., New fractional derivatives with non-local and non-singular kernel:Theory and application to heat transfer model, Thermal Science, 20 (2016), 2, pp. 763-769.
  3. Atangana, A., Baleanu, D., Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, Journal of Engineering Mechanics, 143 (2017), 5, D4016005.
  4. Gómez-Aguilar, J. F., et al., Analytical solutions of the electrical RLC circuit via Liouville-Caputo operators with local and non-local kernels, Entropy, 18 (2016), 8, pp. 402.
  5. Sun, H., Hao, et al., Relaxation and diffusion models with non-singular kernels, Physica A: Statistical Mechanics and its Applications, 468 (2017), pp. 590-596.
  6. Jarad, F., et al., On a new class of fractional operators, Advances in Difference Equations, 1 (2017), pp. 247.
  7. Uğurlu, E., Baleanu, D., Taş, K., On the solutions of a fractional boundary value problem, Turkish Journal of Mathematics, 42 (2018), 3, pp. 1307-1311.
  8. Atangana, A., Nieto, J. J., Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Advances in Mechanical Engineering, 7 (2015), 10, pp.1-7.
  9. Abdeljawad, T., Baleanu, D., On fractional derivatives with exponential kernel and their discrete versions, Reports on Mathematical Physics, 80 (2017), 1, pp. 11-27.
  10. Abdeljawad, T., Baleanu, D., Integration by parts and its applications of a new non-local fractional derivative with Mittag-Leffler non-singular kernel, Jornal of Nonlinear Sciences and Applications, 10 (2017), 3, pp. 1098-1107.
  11. Al-Refai, M., Abdeljawad, T., Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel, Advances in Difference Equations, 2017 (2017), 1, pp. 315.
  12. Owolabi, K. M., Atangana, A., Numerical approximation of nonlinear fractional parabolic differential equations with Caputo-Fabrizio derivative in Riemann-Liouville sense, Chaos, Solitons & Fractals, 99 (2017), pp. 171-179.
  13. Abro, K. A., Memon, A. A., Uqaili, M. A., A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives, The European Physical Journal Plus, 133 (2018), 3, pp. 113.
  14. Sheikh, N. A., et al., A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid, The European Physical Journal Plus, 132 (2017), 1, pp. 54.
  15. Saad, K. M., Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system, The European Physical Journal Plus, 133 (2018), 3, pp. 94.
  16. Bas, E., et al., Comparative simulations for solutions of fractional Sturm-Liouville problems with non-singular operators, Advances in Difference Equations, 350 (2018), pp. 1-19.
  17. Bas, E., Ozarslan, R., Real world applications of fractional models by Atangana-Baleanu derivative, Chaos, Solitons & Fractals, 116 (2018), pp. 121-125.
  18. Bas, E., Metin F., Fractional singular Sturm-Liouville operator for Coulomb potential, Advances in Difference Equations, 300 (2013).
  19. Panakhov, E. S., Ercan, A., Stability problem of singular Sturm-Liouville equation, TWMS Journal of Pure and Applied Mathematics, 8 (2017), 2, pp. 148-159.
  20. Panakhov, E. S., Inverse problem for Dirac system in two partially settled spectrum, Vinity, 3304 (1981), pp. 1-29.
  21. Levitan, B. M., Sargsjan, I. S., Sturm-Liouville and Dirac Operators, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.
  22. Greiner, W., Relativistic Quantum Mechanics: Wave Equations, Springer, Berlin, 1994.
  23. Bjorken, J. D., Drell, S. D., Relativistic Quantum Mechanics, McGraw-Hill, New York, 1964.
  24. Greiner, W., Miler B., Rafelski J., Quantum Electrodynamics of Strong Fields, Springer, Berlin, 1985.
  25. Podlubny, I., Fractional differential equations, Elsevier, San Diego, United States, 1998.

© 2021 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence