THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

MATHEMATICAL MODELS FOR THERMAL SCIENCE

ABSTRACT
PAPER SUBMITTED: 2016-12-12
PAPER REVISED: 2016-12-12
PAPER ACCEPTED: 2017-03-22
PUBLISHED ONLINE: 2017-04-08
DOI REFERENCE: https://doi.org/10.2298/TSCI161212100L
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2017, VOLUME 21, ISSUE 4, PAGES [1563 - 1566]
REFERENCES
  1. El Naschie, M. S., A Review of E Infinity Theory and the Mass Spectrum of High Energy Particle Phys-ics, Chaos Solitons & Fractals, 19 (2014), 1, pp. 209-236
  2. Fan, J., He, J.-H., Biomimic Design of Multi-Scale Fabric with Efficient Heat Transfer Property, Ther-mal Science, 16 (2012), 5, pp. 1349-1352
  3. Wang, Q. L., et al., Fractal Analysis of Polar Bear Hairs, Thermal Science, 19 (2015), Suppl. 1, pp. S143-S-144
  4. Liu, F. J., et al., He’s Fractional Derivative for Heat Conduction in a Fractal Medium Arising in Silk-worm Cocoon Hierarchy, Thermal Science, 19 (2015), 4, pp. 1155-1159
  5. Liu, P., et al., Facile Preparation of Alpha-Fe2O3 Nanobulk via Bubble Electrospinning and Thermal Treatment, Thermal Science, 20 (2016), 3, pp. 967-972
  6. Ren, Z. F, et al. Effect of Bubble Size on Nanofiber Diameter in Bubble Electrospinning, Thermal Sci-ence, 20 (2016), 3, pp. 845-848
  7. He, C. H., et al., Bubbfil Spinning for Fabrication of PVA Nanofibers, Thermal Science, 19 (2015), 2, pp. 743-746
  8. Li, Y., et al. Bubbfil Electrospinning of PA66/Cu Nanofibers, Thermal Science, 20 (2016), 3, pp. 993-998
  9. He, J.-H., A Tutorial Review on Fractal Spacetime and Fractional Calculus, International Journal of Theoretical Physics, 53 (2014), 11, pp. 3698-3718
  10. Hu, Y., He, J.-H., Fractal Space-Time and Fractional Calculus, Thermal Science, 20 (2016), 3, pp. 773-777
  11. Wang, K. L., Liu, S. Y., He’s Fractional Derivative for Non-Linear Fractional Heat Transfer Equation, Thermal Science, 20 (2016), 3, pp. 793-796
  12. Wang, K. L., Liu, S. Y., A New Solution Procedure for Nonlinear Fractional Porous Media Equation Based on a New Fractional Derivative, Nonlinear Science Letters A, 7 (2016), 4, pp. 135-140
  13. Liu, F. J., et al., A Fractional Model for Insulation Clothing with Cocoon-Like Porous Structure, Ther-mal Science, 20 (2016), 3, pp. 779-784
  14. Zhu, W. H., et al., An Analysis of Heat Conduction in Polar Bear Hairs Using One-Dimensional Frac-tional Model, Thermal Science, 20 (2016), 3, pp. 785-788
  15. Sayevand, K., Pichaghchi, K., Analysis of Nonlinear Fractional KdV Equation Based on He's Fractional Derivative, Nonlinear Sci. Lett. A, 7 (2016), 3, pp. 77-85
  16. Cui, Q. N., et al. Analytical and Numerical Methods for Thermal Science, Thermal Science, 20 (2016), 3, pp. IX-XIV
  17. He, J.-H., Li, Z. B., Converting Fractional Differential Equations into Partial Differential Equations, Thermal Science, 16 (2012), 2, pp. 331-334
  18. Li, Z. B., et al., Exact Solutions of Time-Fractional Heat Conduction Equation by the Fractional Com-plex Transform, Thermal Science, 16 (2012), 2, pp. 335-338
  19. Wang, Y. et al., An Explanation of Local Fractional Variational Iteration Method and Its Application to Local Fractional mKdV Equation, Thermal Science, https://doi.org/10.2298/TSCI160501143W

© 2017 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence