THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

SEPARATE DIRECT INJECTION OF DIESEL AND ETHANOL: A NUMERICAL ANALYSIS

ABSTRACT
The purpose of this study is to investigate the theoretical possibility of using a pilot diesel injection for the auto-ignition of a main ethanol injection in a compression ignition engine. To this effect a predictive simulation model has been built based on experimental results for a diesel cycle (pilot and main injection) at 1500 and 2500 min–1, respectively. For every engine speed, in addition to the diesel reference cycle, two more simulations were done: one with the same amount of fuel injected into the cylinder and one with the same amount of energy, which required an increase in the quantity of ethanol proportional to the ratio of its lower heating value and that of diesel. The simulations showed that in all cases the pilot diesel led to the auto-ignition of ethanol. The analysis of the in-cylinder traces at 1500 min–1 showed that combustion efficiency is improved, the peak temperature value decrease with approximately 240 K and, as a result, the NO emissions are 3.5-4 times lower. The CO and CO2 values depend on the amount of fuel injected into the cylinder. At 2500 min–1 there are similar trends but with the following observations: the ignition delay increases, while the pressure and temperature are lower.
KEYWORDS
PAPER SUBMITTED: 2016-08-24
PAPER REVISED: 2016-10-12
PAPER ACCEPTED: 2016-10-30
PUBLISHED ONLINE: 2016-11-06
DOI REFERENCE: https://doi.org/10.2298/TSCI160824274B
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2017, VOLUME 21, ISSUE Issue 1, PAGES [451 - 463]
REFERENCES
  1. *** European Parliament Council of the European Union, Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009, eur-lex.europa.eu/legalcontent/EN/ALL/?uri=CELEX:32009L0028. Accessed 24 Jul 2015
  2. *** European Biofuels Technology Platform, Sustainable Feedstocks for Advanced Biofuels Production in Europe, www.biofuelstp.eu. Accessed 16 Jul 2015
  3. *** U.S. Department of energy, www.eia.gov/. Accessed 17 Jul 2015
  4. Mariasiu, F., Burnete, N., V., Moldovanu, D., Varga, B., O., Iclodean, C., Kocsis, L., Effects of bioethanol ultrasonic generated aerosols application on diesel engine performances, Thermal Science, 19 (2015), 6, pp. 1931-1941, doi:10.2298/TSCI140703108M
  5. Hansdah, D., Murugan, S., Bioethanol fumigation in a DI diesel engine (2014), Fuel, 130:324-333
  6. Imran, A., Varman, M., Masjuki, H., H., Kalam, M., A., Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission (2013), Renew. Sustain. Energy Rev., 26:739-751, doi: 10.1016/j.rser.2013.05.070
  7. López, A., F., Cadrazco, M., Agudelo, A., F., Corredor, L., A., Vélez, J., A., Agudelo, J., R., Impact of n-butanol and hydrous ethanol fumigation on the performance and pollutant emissions of an automotive diesel engine (2015), Fuel, 153:483-491
  8. Chauhan, B., S., Kumar, N., Pal, S., S., Du Jun, Y., Experimental studies on fumigation of ethanol in a small capacity diesel engine, (2011), Energy, 36:1030-1038
  9. Abu-Qudais, M., Haddad, O., Qudaisat, M., The effect of alcohol fumigation on diesel engine performance and emissions (2000), Energy Convers. Manag., 41:389-399
  10. Burnete, N., V., Filip, N., Barabás, I., Diesel-Ethanol blends and their use in Diesel engines (2015), Romanian Journal of Automotive Eng., 89
  11. Rakopoulos, D., C., Rakopoulos, C., D., Kakaras, E., C., Giakoumis, E., G., Effects of ethanoldiesel fuel blends on the performance and exhaust emissions of heavy duty DI diesel engine (2008), Energy Convers. Manag., 49:3155-3162, doi: 10.1016/j.enconman.2008.05.023
  12. Rakopoulos, D., C., Rakopoulos, C., D., Papagiannakis, R., G., Kyritsis, D., C., Combustion heat release analysis of ethanol or n-butanol diesel fuel blends in heavy-duty di diesel engine (2011), Fuel, 90:1855-1867, doi: 10.1016/j.fuel.2010.12.003
  13. Chen, Z., Q., Ma, X., X., Yu, S., T., , Guo, Y., N., Liu, J., S., Physical-chemical properties of ethanol-diesel blend fuel and its effect on the performance and emissions of a turbocharged diesel engine (2009), Int. J. Automot. Technol., 10:297-303, doi: 10.1007/s12239-009-0034-0
  14. Armas, O., Mata, C., Martinez-Martinez, S., Effect of an ethanol-diesel blend on a common-rail injection system (2012), Int. J. Engine Res., 13:417-428, doi: 10.1177/1468087412438472
  15. Pidol, L., Lecointe, B., Starck, L., Jeuland, N., Ethanol-biodiesel-Diesel fuel blends: Performances and emissions in conventional Diesel and advanced Low Temperature Combustions (2012), Fuel, 93:329-338, doi: 10.1016/j.fuel.2011.09.008
  16. Hansen, A., C., Zhang, Q., Lyne, P., W., L., Ethanol-diesel fuel blends - A review (2005), Bioresour. Technol., 96:277-285, doi: 10.1016/j.biortech.2004.04.007
  17. Torres-Jimenez, E., Jerman, M., S., Gregorc, A., Lisec, I., Dorado, M., P., Kegl, B., Physical and chemical properties of ethanol-diesel fuel blends (2011), Fuel, 90:795-802, doi: 10.1016/j.fuel.2010.09.045
  18. Gerdes, K., R., Suppes, G., J., Miscibility of ethanol in diesel fuels (2001), Ind. Eng. Chem. Res., 40:949-956
  19. Eva Iverfeldt, Stålhammar, P., Sarby, H., Ihrfors, C., Westman, B., Sutainable transport by using ethanol in Diesel engines (2015), 36th Int. Vienna Mot. Symp., 20:290-307, doi: 10.1007/s35778-015-0029-6
  20. Boretti, A., Advantages of converting Diesel engines to run as dual fuel ethanol-Diesel (2012), Applied Therm. Eng., 47:1-9, doi: 10.1016/j.applthermaleng.2012.04.037
  21. *** AVL List GmbH, AVL Fire Manual, 2014
  22. Moldovanu, D., Burnete, N., Computational fluid dynamics simulation of a single cylinder research engine working with biodiesel (2013), Thermal Science, 17:195-203.
  23. Schäfer, F., van Basshuysen, R., Schadstoffreduzierung und kraftstoffverbrauch von pkwverbrennungsmotoren. doi: 10.1007/978-3-7091-9305-1, 2013
  24. Heywood, J., B., Internal combustion engine fundamentals. Mcgraw-hill, New York, USA, 1988
  25. Rakopoulos, C., D., Antonopoulos, K., A., Rakopoulos, D., C., Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol-diesel fuel blends (2007), Energy, 32:1791-1808, doi: 10.1016/j.energy.2007.03.005
  26. Lapuerta, M., Armas, O., Herreros, J., M., Emissions from a diesel-bioethanol blend in an automotive diesel engine (2008), Fuel, 87:25-31, doi: 10.1016/j.fuel.2007.04.007
  27. Di, Y., Cheung, C., S., Huang, Z., Comparison of the Effect of Biodiesel-Diesel and Ethanol-Diesel on the Particulate Emissions of a Direct Injection Diesel Engine (2009), Aerosol Science Technol., 43:455-465, doi: 10.1080/02786820902718078
  28. Hamdan, M., A., Khalil, R., H., Simulation of compression engine powered by Biofuels (2010), Energy Conversion Manag., 51:1714-1718, doi: 10.1016/j.enconman.2009.10.037
  29. Putrasaria, Y., Nura, A., Muharama, A., Performance and emission characteristic on a two cylinder di diesel engine fuelled with ethanol-diesel blends (2013), Energy Procedia, 32:21-30, doi: 10.1016/j.egypro.2013.05.004

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence