THERMAL SCIENCE

International Scientific Journal

MODELING THE COOLING PERFORMANCE OF VORTEX TUBE USING A GENETIC ALGORITHM-BASED ARTIFICIAL NEURAL NETWORK

ABSTRACT
In this study, artificial neural networks (ANNs) have been used to model the effects of four important parameters consist of the ratio of the length to diameter(L/D), the ratio of the cold outlet diameter to the tube diameter(d/D), inlet pressure(P), and cold mass fraction (Y) on the cooling performance of counter flow vortex tube. In this approach, experimental data have been used to train and validate the neural network model with MATLAB software. Also, genetic algorithm (GA) has been used to find the optimal network architecture. In this model, temperature drop at the cold outlet has been considered as the cooling performance of the vortex tube. Based on experimental data, cooling performance of the vortex tube has been predicted by four inlet parameters (L/D, d/D, P, Y). The results of this study indicate that the genetic algorithm-based artificial neural network model is capable of predicting the cooling performance of vortex tube in a wide operating range and with satisfactory precision.
KEYWORDS
PAPER SUBMITTED: 2014-01-26
PAPER REVISED: 2014-09-09
PAPER ACCEPTED: 2014-09-11
PUBLISHED ONLINE: 2014-10-05
DOI REFERENCE: https://doi.org/10.2298/TSCI140126112P
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2016, VOLUME 20, ISSUE 1, PAGES [53 - 65]
REFERENCES
  1. Aljuwayhel, N. F.,Nellis, G. F., Klein, S. A., Parametric and internal study of the vortex tube using a CFD model, International Journal of Refrigeration, 28 (2005), PP. 442-450.
  2. Pouraria, H., Park, W. G., 2010. Comparison of different two equation turbulence models for studying the effect of cold outlet diameter on cooling performance of vortex tube, Proceeding of ICMET-2010, 804- 808.
  3. Ranque, G. J., Experiments on expansion a Vortex with Simultaneous Exhaust of Hot Air and Cold Air (in French), J. Phy. Radium, 7(1933), PP. 112-114.
  4. Khodorkov, L., Poshernev, N.V., Zhidkov, M.A., The vortex tube-a universal device for heating, cooling, cleaning, and drying gases and separating gas mixtures, Chem. Petrol. Eng, 39( 2003), PP. 409-415.
  5. Gao, C.M., Bosschaart, K.J., Zeegers, J.C.H., Waele de, A.T.A.M., Experimental study on a simple Ranque-Hilsch vortex tube, Cryogenics, 45(2005), PP.173-183.
  6. Riu, K. J., Kim, J. S., Choi, I. S., Experimental investigation on dust separation characteristics of a vortex tube, JSME Int J., Ser. B 47 (2004), PP. 22-36.
  7. Martin, R. W., Zilm, K. W., Variable temperature system using vortex tube cooling and fiber optic temperature measurement for low temperature magic angle spinning NMR, J. M. R. 168(2004), PP. 202-209.
  8. Bruno, T., Laboratory applications of the vortex tube, Can. J. Chem. Eng, 64(1987), PP. 987-988.
  9. Yang, L., Zhao, L. X., Zhang, C. L., Gu, B., Loss efficiency model of single and variable- speed compressors using artificial neural networks, Int. J. Refrigeration, 32(2009), PP. 1423-1432.
  10. Rosiek, S., Batlles, F. J., Performance study of solar-assisted air-conditioning system provided with storage tank using artificial neural networks, Int. J. Refrigeration, 34(2011), PP. 1446-1454.
  11. Sayin, C,. Ertunc, H., Hosoz, M., Kilicaslan, I., Cankci, M., Performance and exhaust emissions of a gasoline engine using artificial neural network, Appl. Therm, Eng, 27(2007), PP. 46-54.
  12. Romeo, L. M., Gareta, R., Neural network for evaluating boiler behavior, Appl. Therm. Eng. 26(2006), PP. 1530-1536.
  13. Abbasi, A., Bahar, L., Modeling and control of evaporative condenser cooling load, Appl. Therm. Eng, 25(2005), PP.3176-3186.
  14. Tahavvor, A. R., Yaghoubi, M., Prediction of frost deposition on a horizontal circular cylinder under natural convection using artificial neural networks, Int. J. Refrigeration, 34( 2011), PP. 560-566.
  15. Dincer, K., Tasdemir, S., Baskaya, S., Uysal, B. Z., Modeling the effects of length to diameter ratio and nozzle number on the performance of counter flow Ranque-Hilsch vortex tubes using artificial neural networks, Appl. Therm. En, 28(2008), PP. 2380-2390.
  16. Ulver, O., Kumaci, V., Atas, S., Using the artificial neural network model for modeling the performance of the counter flow vortex tube, Expert Syst. Appl, 36(2009), PP.12256-12263.
  17. Kocabas, F., Korkmas, M., Sorgucu, U., Donmez, S., Modeling of cooling and heating performance of counter flow type vortex tube by using artificial neural network, International journal of refrigeration, 33(2010), PP.963-972.
  18. Korkmaz, M.E., Gumusel, L., Markal, B., Using artificial neural network for predicting performance of the Ranque-Hilsch vortex tube, International journal of refrigeration, 35(2012), pp.1690-1696.
  19. Prechelt, L., Automatic early stopping using cross validation: quantifying the criteria, Neural Networks, 11(1998), pp. 761-767.
  20. Kia, S. M., Neural networks in Matlab, Kian Rayane Sabz Publication, Tehran, Iran, 2008.
  21. Davis, L. (Ed.). Handbook of genetic algorithms (Vol. 115). Van Nostrand Reinhold, New York, 1991.
  22. Hornik, K., Stinchcombe, M., White, H., Multilayer feed forward networks are universal approximators, Neural Networks, 2(1989), PP. 359-366.
  23. Hagan, M.T., Menhaj, M., Training feed forward networks with the Marquardt algorithm, IEEE T. Neural Networ, 5(1994), PP. 989-993.
  24. Lahiri, K., Ghanta, K.C., Hybrid support vector regression and genetic algorithm technique—a novel approach in process modeling, Chem. Prod. Process Model, 4( 2009), PP. 1-24.
  25. Cartwright, H.M., Applications of Artificial Intelligence in Chemistry, Oxford University Press, Oxford, 1993.
  26. Yaxiong, Zh., An improved QSPR study of standard formation enthalpies of acyclic alkanes based on artificial neural networks and genetic algorithm, Chemometr. Intell. Lab. Syst, 98(2009), PP. 162-172.
  27. Kia, S. M., Genetic Algorithm in MATLAB, Kian Rayane Sabz Publication, Tehran, Iran, 2010.
  28. Eiamsa-ard, S., Promvonge, P., Review of Ranque-Hilsch effects in vortex tubes, Renew. Sustain. Energy Rev, 12(2008), PP. 1822-1842.
  29. Pouraria, H., Zangooee, M. R., Numerical investigation of vortex tube refrigerator with a divergent hot tube, Energy Procedia, 14(2012), PP. 1554-1559.
  30. Pourmahmoud, N., Hassanzadeh, A., Moutaby, O., Bramo, A., Numerical investigation of operating pressure effect on the performance of a vortex tube, Thermal Science, doi:10.2298/TSCI110907030P
  31. Bramo, A,R., Pourmahmoud, N., Computational Fluid Dynamic simulation of length to diameter ratio effects on the energy separation in a vortex tube, Thermal Science, 15.3(2011), PP.833-848.
  32. Shamsoddini, R., Hossein Nezhad, A., Numerical analysis of the effect of nuzzle number on the flow and power of cooling of a vortex tube, International journal of refrigeration, 33(2010), PP.774-782.
  33. Hamoudi, A.F., An Investigation of a Micro-Scale Ranque- Hilsch vortex tube. MS Thesis, Faculty of Mechanical, University of Windsor, Ontario, Canada.2006.
  34. Saidi, M. H., Valipour, M. S., Experimental Modeling of vortex tube refrigerator, Appl. Therm. Eng, 23(2003), PP. 1971-1980
  35. Nimbalkar, S. U., Muller, M. R., An experimental investigation of the optimum geometry for the cold end orifice of a vortex tube, Appl. Therm. Eng, 29(2009), PP. 509-514.
  36. Behera, U., Paul, P. J., Kasthurirengan, S., Karunanithi, R., Ram, S. N., Dinesh, K., Jacob, S., CFD analysis and experimental investigations towards optimizing the parameters of Ranque-Hilsch vortex tube, Int. J. Heat Mass Transfer, 48(2005), PP. 1961-1973.
  37. Pouraria, H., Park, W.G., Numerical investigation on cooling performance of Ranque-Hilsch vortex tube, Thermal Science, doi:10.2298/TSCI120610052P
  38. Manimaran, R., Karuppa Raj, R.T., Kumar, K.S., Experimental studies of temperature separation and flowfield for different geometrical parameters in Ranque-Hilsch vortex tube, Thermal Science, doi:10.2298/TSCI110921047M
  39. Shamsoddini, R., Nezhad, A.H., Numerical analysis of the effect of nozzles on the flow and power of cooling a vortex tube, International journal of refrigeration, 33(2010),pp.774-782.
  40. Rahbar, N., Taherian, M., Shateri, M., Valipour, M.S., Numerical investigation on flow behavior and energy separation in a Micro-Scale vortex tube, Thermal Science, doi:10.2298/TSCI120316206R
  41. Skye, H.M., Nellis, G.F., Klein, S.A., Comparison of CFD analysis to empirical data in a commercial vortex tube, International Journal of Refrigeration, 29(2006), pp. 71-80.

© 2019 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence