THERMAL SCIENCE

International Scientific Journal

THERMAL PERFORMANCE OF A PORUS RADIAL FIN WITH NATURAL CONVECTION AND RADIATIVE HEAT LOSSES

ABSTRACT
An analytic (series) solution is developed to describe the thermal performance of a porous radial fin with natural convection in the fluid saturating the fin and radiation heat loss from the top and bottom surfaces of the fin. The HAM results for the temperature distribution and base heat flux are compared with the direct numerical results and found to be very accurate.
KEYWORDS
PAPER SUBMITTED: 2012-06-19
PAPER REVISED: 2012-07-19
PAPER ACCEPTED: 2012-07-26
DOI REFERENCE: https://doi.org/10.2298/TSCI120619149D
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2015, VOLUME 19, ISSUE 2, PAGES [669 - 678]
REFERENCES
  1. R. Bahadur and A. Bar-Cohen, Orthotropic thermal conductivity effect on cylindrical pin fin heat transfer, Int. J. Heat Mass Transfer, 50 (2007) 1155-1162.
  2. S.M. Zubair, A.F.M. Arif and M.H. Shurqawy, Thermal analysis and optimization of orthotropic pin fins: A closedform analytical solution, ASME J Heat Transfer,132 (2010) 031301-1.
  3. A. Aziz and O.D. Makinde, Heat transfer and entropy generation in a two-dimensional orthotropic convection pin fin, Int. J. Exergy 7 (2010) 579-592.
  4. A. Aziz and M.M. Rahman, Thermal performance of a functionally graded radial fin, Int. J. Thermophysics. 30 (2009) 1637-1648.
  5. S. Krishnan, S.V.Garimella and S.S.Kang ,A novel hybrid heat sink using phase change materials for transient thermal management of electronics. IEEE Trans. Compon. Packag. Technol. 28 (2005) 281-289.
  6. S. Kiwan, Thermal analysis of natural convection in porous fins, Transport in Porous Media, 67 (2006) 17-29.
  7. S. Kiwan, Effect of radiative losses on heat transfer from porous fins, Int. J. Thermal Sci. 46 (2007) 1046-1055.
  8. S. Kiwan and O. Zeitoun, Natural convection in a horizontal cylindrical annulus using porous fins, Int. J. Numer. Method H. 18 (2008) 618-634.
  9. S.Y. Kim, J.W. Paek and B.H. Kang, Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger, ASME J. Heat Transfer 122 (2000) 572-578.
  10. A-R, A. Khalid, Investigation of heat transfer enhancement through porous fins, ASME J. Heat Transfer 132 (2010) 034503-1-5.
  11. B. Kundu and D. Bhanja, An analytical prediction for performance and optimum design analysis of porous fins, Int. J. Refrigeration 34 (2011) 337-352.
  12. A. Taklifi, C. Aghanajafi and H. Akrami, The effect of MHD on a porous fin attached to a vertical isothermal surface, Transport in Porous Media, 85 (2010) 215-231.
  13. A. Shekarriz and O.A. Plumb, Enhancement of film condensation using porous fins, J. of Thermo. Phys. Heat Transfer, 3 (1989) 309-314.
  14. P.K. Sarma and F. Mayinger, Condensation on vertical porous metal fins, The Canadian J. Chem. Engr., 70 (1992) 463-469.
  15. H. Kahalerras and N. Targui, Numerical analysis of heat transfer enhancement in a double pipe heat exchanger with porous fins, Int. J. Numerical Methods H., 18 (2008) 593-617.
  16. M. Tye-Gingras and L. Gosselin, Thermal resistance minimization of a fin-and-porous-medium heat sink with evolutionary algorithms, Numerical Heat Transfer: Part A - Applications, 54 (2008) 349-366.
  17. T-M Jeng, S-C Tzeng and Y-H Hung, An analytical study of local thermal equilibrium in porous heat sinks using fin theory, Int. J. Heat Mass Transfer, 49 (2006) 1907-1914.
  18. S.V. Naidu, V.D. Rao and P.K. Sarma, Performance of a circular pin fin in a cylindrical porous enclosure, Int. Comm. Heat Mass Transfer, 31 (2004) 1209-1218.
  19. M.G. Maheria, Thermal analysis of natural convection and radiation in porous fins, M.S. Thesis, Cleveland State University, May 2010.
  20. R.S.R. Gorla and A.Y. Bekier, Thermal analysis of natural convection and radiation in porous fins, Int. Comm. Heat Mass Transfer 38 (2011) 638-645.
  21. Liao SJ. Beyond perturbation: introduction to the homotopy analysis method. Boca Raton: Chapman & Hall/CRC Press; 2003.
  22. Liao SJ. Notes on the homotopy analysis method: some definitions and theorems. Commun Nonlinear Sci Numer Simulat 2009;14(4):983-997.
  23. Biazar, J., Gholamin, P., Hosseini, K., Variational iteration method for solving FokkerPlanck equation, Journal of the Franklin Institute, 2010; 347 (7) 1137-1147.
  24. C¸ enesiz, Y., Keskin, Y., Kurnaz, A., The solution of the BagleyTorvik equation with the generalized Taylor collocation method, Journal of the Franklin Institute, 2010; 347 (2) 452-466.
  25. Kitahara, N., Yamane, S., Yano, H., Approximate solutions for axisymmetric exterior-field problems by the combined scheme of finite elements and finite differences , Journal of the Franklin Institute, 1991; 328 (2-3) 217-229.
  26. Jacobsohn, G., A discrete Taylor series method for the solution of two-point boundary-value problems, Journal of the Franklin Institute, 2001; 338 (1) 61-68.
  27. Ebadi, G., Biswas, A., Application of the G'/G-expansion method for nonlinear diffusion equations with nonlinear source, Journal of the Franklin Institute, 2010; 347 (7) 1391-1398.
  28. Shang, X., Wu, P., Shao, X., An efficient method for solving EmdenFowler equations, Journal of the Franklin Institute, 2009; 346 (9) 889-897.

© 2019 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence