
Darvishi, M. T., et al.: Thermal Performance of a Porous Radial Fin with … 
THERMAL SCIENCE, Year 2015, Vol. 19, No. 2, pp. 669-678 669 

THERMAL  PERFORMANCE  OF  A  POROUS  RADIAL  FIN 
WITH  NATURAL  CONVECTION  AND  RADIATIVE  HEAT  LOSSES 

by 

Mohammad Taghi DARVISHI 
a, Rama Subba Reddy GORLA 

b*,  
Farzad KHANI 

a, and Abdul AZIZ 
c 

a Department of Mathematics, Razi University, Kermanshah, Iran 
b Department of Mechanical Engineering, Cleveland State University, Cleveland, O., USA 

c Department of Mechanical Engineering, School of Engineering and Applied Science,  
Gonzaga University, Spokane, Wash., USA 

Original scientific paper 
DOI: 10.2298/TSCI120619149D 

An analytic (series) solution is developed to describe the thermal performance of 
a porous radial fin with natural convection in the fluid saturating the fin and ra-
diation heat loss from the top and bottom surfaces of the fin. The homotropy 
analysis method results for the temperature distribution and base heat flux are 
compared with the direct numerical results and found to be very accurate. 
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Introduction 

In recent years, several novel ideas have been proposed for producing fins that are 
significantly lighter but have the thermal performance comparable to that of solid metallic fins. 
For example, pin fins made of polymer composites impregnated with carbon fibers give design-
ers the flexibility to develop light weight sinks for the thermal management of electronic sys-
tems. Because of the large difference in the thermal conductivities of carbon fiber and polymer 
composite, such a fin exhibits strong orthotropic behavior requiring a two-dimensional heat 
conduction model for analysis as shown by Bahadur and Bar-Cohen [1], Zubair, et al. [2], and 
Aziz and Makinde [3]. Aziz and Rahman [4] considered a fin made of a functionally graded ma-
terial and analyzed the performance of a radial fin with a continuously increasing thermal con-
ductivity in the radial direction. Another innovative idea to enhance the performance of solid 
metal fin is to immerse the last 30% of the fin in a phase change material [5]. 

Many papers have explored the use of porous fins. Although a fin made of a porous 
material has low thermal conductivity, a very large area of the material comes in contact with 
the cooling fluid. This enables the porous fin to give superior performance with a significant 
reduction in weight compared with a solid metal fin. Kiwan [6] introduced the Darcy's model 
to write the energy equation governing the temperature distribution in the porous fin operating 
in a natural convection environment. The Darcy model simulates the fluid-solid interaction in 
the porous medium. He found that the thermal performance of a porous fin can be described 
by a single parameter Sh which is a combination of Rayleigh number, the Darcy number, the 
thermal conductivity ratio, Kr, and fin length to thickness ratio, L/t. He found that, with a 
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proper choice of Kr and L/t, the performance of a porous fin can exceed the performance of a 
solid fin. In a contemporaneous paper, Kiwan [7] extended the analysis to include the effect of 
radiative surface heat loss and concluded that at large Rayleigh numbers, radiation played a 
small role in the overall heat transfer process. In a subsequent paper, Kiwan and Zeitoun [8] 
performed a finite volume type numerical study to assess the performance of rectangular po-
rous fins mounted around the inner cylinder of a cylindrical annulus. They found that under 
natural convection cooling porous fins enhanced the heat transfer rate by 75% compared with 
the corresponding value obtained with solid fins. Kim, et al. [9] investigated experimentally 
the impact of porous fins on the pressure drop and heat transfer characteristics of plate-fin 
heat exchangers. They tested porous fins made of 6106 aluminum-alloy foam with different 
permeabilities and porosities and concluded that porous fins of low porosity and high pore 
density are desirable for a compact heat exchanger design. Khaled [10] analyzed a porous rec-
tangular fin with the cooling fluid flowing normal to the top face of the fin. Again he also 
found that permeable fins transfer more heat than solid fins at large values of dimensionless 
suction velocity and moderate holes-to-fin ratios. Kundu and Bhanja [11] developed an ana-
lytical procedure that allows the optimum dimensions of a porous fin to be established for a 
specified base heat transfer rate. Taklifi, et al. [12] studied the effect of MHD on the perfor-
mance of a porous fin attached to a vertical surface. The use of porous metal fins to enhance 
condensation has been investigated by Shekarriz and Plumb [13] and Sarma and Mayinger 
[14] among others. Kahalerras and Targui [15] studied the performance of a double pipe heat 
exchanger fitted with porous fins. Tye-Gingras and Gosselin [16] used the evolutionary algo-
rithms to minimize the thermal resistance of fin-and-porous-medium heat sink. The concept of 
thermal network combined with the basic fin theory was used by Jeng, et al. [17] to model 
forced convection over a porous heat sink. Naidu, et al. [18] reported a numerical study of 
natural convection from a cylindrical fin placed in a cylindrical porous enclosure. 

Two recent works of immediate relevance to the present study are those of Maheria 
[19] and Gorla and Bakier [20]. Both these works derive a simple theoretical model to de-
scribe the temperature field in a single porous rectangular fin when it is losing heat by simul-
taneous natural convection and radiation to the surrounding fluid. The model is simple but 
does capture the essential features of the more elaborate model of Kiwan [6]. 

The preceding literature clearly shows the work on porous fins has been confined to 
straight fins of rectangular profile and pin fins. No attempt has been made to study porous radial 
fins although radial fins are used in numerous applications where porous fins can provide a light-
er, cheaper, and superior alternative to solid metallic fins. The purpose of this paper is to use the 
simplified model proposed by Kiwan [6] and subsequently used by Maheria [19] and Gorla and 
Bakier [20] to analyze the thermal performance of radial porous fin of uniform thickness. The 
energy equation appears in the form of an ordinary differential equation containing two non-li-
near terms. The first non-linear term is associated with the buoyancy effects in the fluid and the 
permeability of the porous medium. The second non-linearity is a consequence of radiative cool-
ing at the surface of the fin. Following [6, 19, 20], we assume the base of the fin at a constant 
temperature and the tip of the fin to be adiabatic. The present formulation characterizes the effect 
of ambient temperature differently from Maheria [19] and Gorla and Bakier [20] and provides a 
better picture of the effect of the ambient temperature on the thermal performance of the fin. 

The method adopted to solve the non-linear problem analytically is the homotopy 
analysis method (HAM). The method was originally proposed by Liao [21]. Unlike other 
methods such as the perturbation method, HAM does not mandate the presence of small pa-
rameters in the mathematical model for it to work satisfactorily. The method can also be ele-
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gantly combined with other analytical tools such as the Pade approximate which is a method 
of improving the convergence of the series The Pade approximate of a series such as HAM is 
the ratio of two polynomials, P of degree M and Q of degree N, whose coefficients are deter-
mined by imposing the condition that the expansion of the Pade approximate and the HAM 
series agree to the order M + N, and Q(0) = 1. Also, the method allows a convenient way of 
controlling and adjusting the convergence of the series [22]. These advantages are not availa-
ble with other methods such as the variational iteration method [23], the generalized Taylor 
collocation method [24], finite difference and finite elements method [25], discrete Taylor se-
ries method [26], and others [27, 28]. 

Mathematical analysis 

Consider a radial (annular or circular) fin 
of base radius rb, tip radius rt, and thickness t as 
illustrated in fig. (1). The base of the fin is 
maintained at a constant temperature Tb. The tip 
of the fin is assumed to be adiabatic. The fin is 
made of a porous material of effective thermal 
conductivity keff and permeability K. The fin is 
in contact with an ambient fluid which infiltrates 
through the fin following the Darcy's law. The 
fluid has a specific heat cp,f, density ρf, kinemat-
ic viscosity νf, thermal conductivity kf, and coef-
ficient of volumetric expansion βf. The exposed 
surfaces (top and bottom) are assumed to gray 
with a constant emissivity ε and emit radiation 
to the ambient fluid (temperature Tb), which also 
serves as the radiation heat sink. 

The assumptions are made in the derivation of the energy equation: 
– the porous fin is homogeneous, isotropic and saturated with the single-phase ambient fluid, 
– the thermophysical properties of both the solid matrix and the fluid are independent of 

temperature, 
– the solid matrix and the fluid are in local thermodynamic equilibrium, 
– heat conduction occurs only in the radial direction and consequently there are no trans-

verse or circumferential temperature gradients in the fin, 
– the solid-fluid interaction is described by the Darcy's law, and 
– the fin operates under steady-state condition. 

Making an energy balance on an element of fin (fig. 1) of circumference 2πr, thick-
ness t, and radial height dr, we get: 
 qr − qr+dr − qconv − qrad = 0 (1) 
where 

 d
d d(2π ) d
d dr r r

Tq q k rt r
r r+
⎡ ⎤− = ⎢ ⎥⎣ ⎦

 (2) 

 4 4
rad f2 (2π d )( )a aq F r r T Tεσ −= −  (3) 

 conv f ,f( )(2π d ) ( )p aq v r r r c T Tρ= −  (4) 

Figure 1. Porous radial fin geometry and 
energy balance 
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where eq. 2 is based on the application of Fourier's law of heat conduction, eq. 3 is the radiative 
heat losses from the top and bottom faces of the fin, and eq. 4 is the rate of change of enthalpy 
of the buoyant fluid (infiltrate) passing through the fin. This is the rate at which the energy is 
removed from the fin by the buoyancy induced flow through the fin. The velocity of the buoy-
ancy driven flow ν(r) at any radiation location r is obtained by applying the Darcy's law: 

 
f

g ( )
( )

β
ν

ν
−

= aT T
r  (5) 

Substituting eqs. (2)-(5) into eq. (1), leads to the non-linear ordinary differential 
equation governing the temperature distribution in the fin: 

 4 4ff f

f eff eff

2g1 d d ( ) ( ) 0
d d

εσρ β
ν

−− − − − =a
a a

FKTr T T T T
r r r k t k t

 (6) 

The boundary conditions at the fin's base and at the fin's tip may be written: 

 r = rb,     T = Tb (7) 

 d, 0
dt
Tr r
r

= =  (8) 

We introduce the dimensionless quantities: 

 
3

eff f b
2 2

b b b f f

g
, , , , Da , Gr

β
θ θ

ν
= = = = = =a

a r
T k T tT r KR K

T T r k t
 (9) 

 
22 2 3

f f ,f b bb f b bf

f f eff eff

g 2Da RaPr , Ra Gr Pr, ,
ρ β εσ

α ν
−⎛ ⎞= = = = =⎜ ⎟

⎝ ⎠
p a

r

K c r Tr F r Tv Nc Nr
K t k t k t

 (10) 

and rewrite eqs. (6)-(8) in dimensionless form: 

 2 4 41 d d ( ) ( ) 0
d d

θ θ θ θ θ⎛ ⎞ − − − − =⎜ ⎟
⎝ ⎠

a aR Nc Nr
R R R

 (11) 

 R = 1,     Θ(R) = 1 (12) 

 d*, ( ) 0
d

R R R
R
θ= =  (13) 

Equation (11) is a non-linear ordinary differential equation. It contains two non-li-
near terms. The first non-linearity is due to the natural convective transport of energy by the 
infiltrate. This energy is the rate at which the enthalpy of the infiltrate increases as it flows 
through the porous fin. The second non-linear term is associated with the surface radiative 
heat transfer from the fin to the ambient fluid which also serves as the radiation sink. 

It may be noted that the parameter Nc is a combination of Darcy's number, Rayleigh 
number, the thermal conductivity ratio Kr, and the ratio of fin base radius to fin thickness. The 
parameter Nr indicates the role of surface radiation relative to conduction in the fin. The para-
meter Θa is the ratio of ambient fluid temperature and the base temperature. Equations (11)-(13) 
show that the temperature distribution in the fin depends on four dimensionless parameters 
Nc, Nr, Θa, and R*. 
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The heat flow through the fin, q, can be found by applying the Fourier's law at the 
base of the fin: 

 
b

ff b
d(2π )
de

r r

Tq k r t
r =

= −  (14) 

or dimensionless form: 

 
ff b

'(1)
2π e

qQ
k tT

θ= = −  (15) 

Homotopy analysis method 

Let's define the (jointly continuous) map Θ(R; p) Θ(R), where the embedding pa-
rameter p  [0, 1], such that, as p increases from 0 to 1, Θ(R; p) vary from the initial guess to 
the exact solution Θ(R). To ensure this, we construct the following zero-order deformation 
equation of the governing equation: 

 0(1 ) [ ( ; ) ( )] [ ( ; )]Θ θ Θ− − =p R p R p R pL N  (16) 

where ћ ≠ 0 is a convergence-control parameter [22] which helps to ensure the convergence of 
the solution series; the operator N [Θ(R; p)] is defined by the governing eq. (11) depending 
on the two-dimensional case. So N  can be expressed by: 

 
2

2 4 4
2

1[ ( ; )] : ( ) ( )Θ ΘΘ Θ θ Θ θ∂ ∂
= + − − − −

∂ ∂
a aR p Nc Nr

R R R
N  (17) 

The boundary conditions (12) and (13) yields: 

 (1; ) 1, ( *; ) 0ΘΘ ∂
= =

∂
p R p

X
 (18) 

L  is the auxiliary linear operator defined by: 

 
2

2( ) :Θ Θ∂
=
∂R

L  (19) 

Clearly, when p = 0 the zero-order deformation eqs. (16) and (18) give rise to: 

 Θ(R; 0) = θ0(R) (20) 

When p = 1, they become: 

 Θ(R; 1) = θ(R) (21) 

Here, Θ0(R) is initial guess. We can assume the initial guess of θ(R) to be θ0(R) = 1. 
Expanding Θ(R; p) in the Maclaurin series with respect to the embedding parameter 

p, we obtain: 

 0
1

(1; ) ( ) ( )Θ θ θ
∞

=
= +∑ k

k
k

p R R p  (22) 

where 

 1( ) ( ; 0)
!

θ Θ∂
=

∂

k

k kR R
k p

 (23) 
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Assuming that series converges at p = 1, we have: 

 0
1

( ) ( ) ( )k
k

R R Rθ θ θ
∞

=
= +∑  (24) 

Differentiating the zero-order deformation eqs. (16) and (18) m times with respect to 
p, then setting p = 0, and finally dividing by m!, we have the high-order deformation equa-
tions (m ≥ 1): 

 1[ ] ( )m m m mRθ χ θ −− =L � H K  (25) 

with the boundary conditions: 
 (1) 0, ' ( *) 0m m Rθ θ= =  (26) 
where 

 
0, 1
1, 1m

m
m

χ
=⎧

= ⎨ >⎩
 (27) 

and 
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1 2θ θ θ θ θ θ
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m
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k
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1

2 4
1 1

0 0 0
(1 )( )θ θ θ θ χ θ θ

−

− − − −
= = =

⎛ ⎞
− + − − +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑

jm k

m k k i j i m a a
k j i

Nr Nc Nr  (28) 

where the prime denotes differentiation with respect to the similarity variable R. Then the so-
lutions for eq. (25) can be expressed by: 

 1
1 1 2( ) ( ) [ ( ) ]m m m mR R R c R cθ χ θ −
−= + + +L H K  (29) 

where the integral constants c1 and c2 are determined by boundary conditions (26) and  
H (R) = R. Hence the mth-order approximation of Θ(X) can be generally expressed by: 

 
3

,
0

( ) ( )
m

n
m m n

n
R Rθ

=
= Γ∑  (30) 

where Гm,n(ћ) are dependent upon ћ. Equation (30) is a family of solutions which is expressed 
by the auxiliary parameter ћ. With the aid of mathematical software, such as 
MATHEMATICA or MAPLE, it is easy to proceed to high orders. It is worth noting that until 
now, HAM has been applied to steady-state problems only. Whether or not it is applicable to 
transient problems i. e. partial differential equations awaits future research exploration. The 
computational time needed to implement HAM is comparable to the time needed for the di-
rect numerical solutions but the real advantage of HAM is that it gives an analytical solution. 

Results and discussion 

It is important to ensure that the solution series (24) converges. Fortunately, we have 
the freedom to choose the values of the auxiliary parameters ћ. This parameter provides a sim-
ple way to adjust and control the convergence region and as well as the rate of convergence of 
the series solution, as shown by Liao [21]. Let ћ be unknown variable. By plotting the curves of 
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Θ"(1) vs. ћ, it is possible to choose the proper values of ћ so as to ensure that the series solution 
converges. A sample of these calculations is shown in figs. (2) and (3). The flat regions of the 
curves in figs. (2) and (3) establish the convergence region of the auxiliary parameter. 

Figure 2. θ"(1) vs. ћ for the 20th-order 
approximation at Θa = 0.4, Nr = 1, and R* = 1.5 

Figure 3. θ"(1) vs. ћ for the 20th-order 
approximation at Θa = 0.2, Nc = 1, and R* = 2 

The HAM results were generated with the 20 terms of the series (24) and found to be in 
agreement with the direct numerical solution of eqs. (11)-(13) up to three places of decimal. The 
numerical solutions were obtained using MAPLE. The software uses a second-order difference 
scheme combined with an order bootstrap technique with mesh-refinement strategies: the differ-
ence scheme is based on either the trapezoid or midpoint rules; the order improvement/accuracy 
enhancement is either Richardson extrapolation or a method of deferred corrections. 

Figure (4) shows the effect of natural convective heat loss on the temperature distri-
bution in the fin when the radiation heat loss, the environment temperature, and the ratio of 
outer to inner radius are kept fixed. As the buoyancy effects become stronger i. e. Nc increas-
es, the local temperature in the fin decreases. This behavior is synonymous with the well-
known behavior of the solid radial fin. The decrease in the local temperature is accompanied 
by the increase in the base heat flow as will be seen later. The parameter Nc represents the 
buoyancy effect. Buoyancy is principally a macro scale effect. The buoyancy force influences 
the velocity and temperature fields. The parameter Nr represents radiation effect. It influences 
the temperature field by increasing the heat transfer rates from the surface. When the convec-
tion parameter Nc and the radiation parameter Nr is allowed to vary as in fig. (5), the local fin 

 
Figure 4. Analytic temperature distributions for 
the 20th-order HAM approximation at θa = 0.4,  
Nr = 1, and R* = 1.5, for different values of Nc 

Figure 5. Analytic temperature distributions for 
the 20th-order HAM approximation at θa = 0.2, 
Nc = 1, and R* = 2, for different values of Nr 
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temperature decreases because of the increasing strength of radiative heat exchange between 
the exposed surface of the fin and the ambient. 

Figure (6) shows that as the ambient temperature decreases, it causes the local fin 
temperature to decrease. This indicates augmented heat transfer rates. These results pertain to 
the circumstance when the buoyancy induced natural convection is much stronger (Nc =10) 
than the surface radiation transport (Nr = 1). The quantity of more practical importance is the 
heat flow through the base of the fin, −θ′(1), given by eq. (15). The results are in figs. (7)-(10) 
and cover a wide range of values of the parameters Nc, Nr, and θa for fin geometries with  
R* = 1.75 and 2.0. These values of R* are often used to design the cooling fins attached to the 
cylindrical surfaces of combustion chambers and for improving the heat dissipation from the 
gas-side of the heat exchanger tubes. The results in figs. (7)-(10) confirm the expectation that 
as the natural convection and radiation effects increase in strength either individually or in 
concert, the base heat flow increases. Figures (7) and (8) show that heat transfer rates get 
augmented as a result of increased buoyancy force. Figures (9) and (10) show that heat trans-
fer rates get augmented as a result of increased emissivity of the surface. We believe the re-
sults presented in figs. (7)-(10) can be used to evaluate the thermal performance of porous ra-

Figure 6. Analytic temperature distributions for 
the 20th-order HAM approximation at Nr = 1, 
Nc = 10, and R* = 1.75, for different values of θa 

Figure 7. Dimensionless base heat flow: effect of 
natural convection and radiation when θa = 0.2, and 
R* = 1.75 

Figure 8. Dimensionless base heat flow:  
effect of natural convection and radiation when  
θa = 0.6, and R* = 1.75 

Figure 9. Dimensionless base heat flow:  
effect of natural convection and radiation when 
θa = 0.2, and R* = 2 
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dial fins under a variety of operational conditions. Figure (11) displays heat transfer rates vs. 
ambient temperature with the ratio of tip radius to base radius (R*) as a parameter. We ob-
serve that the heat transfer rates increase with R*. This is due to the increased heat transfer ar-
ea as R* increases. As the ambient temperature increases the heat transfer rate decreases. This 
is to be expected because the driving force for heat transfer rate decreases as Θa increases. 

Figure 10. Dimensionless base heat flow:  
effect of natural convection and radiation when  
Θa = 0.8, and R* = 2 

Figure 11. Dimensionless base heat flow: effect 
of fin radial parameter and ambient 
temperature when Nc = 10, and Nr = 5 

Nomenclature 
cp,f – specific heat of the ambient fluid, [Jkg–1] 
Da – Darcy number, [–] 
Ff–a – shape factor for radiation heat transfer, [–] 
g – acceleration due to gravity, [ms–2] 
Kr – thermal conductivity ratio, [–] 
keff – effective thermal conductivity of  

porous fin, [Wm–1K–1] 
kf – thermal conductivity of ambient fluid, [Wm–1K–1] 
L – length of the fin, [m] 
Nc – buoyancy or natural convection parameter, [–] 
Nr – radiation parameter 
p – embedding parameter, [–] 
Q – dimensionless base heat flow, [–] 
q – base heat flow, [Wm–2] 
R – dimensionless radius, [–] 
R* – ratio of tip radius to base radius, [–] 
r – radial co-ordinate, [m] 
rb – base radius, [m] 
rt – tip radius, [m] 
T – local fin temperature, [K] 
Ta – ambient temperature, [K] 

Tb – base temperature, [K] 
t – fin thickness, [m] 
ћ – auxiliary parameter, [–] 
L – auxiliary linear operator 
N – non-linear operator 

Greek symbols 

αf  – thermal diffusivity of ambient  
fluid, [m2s–1] 

βf – volumetric thermal expansion coefficient 
of the ambient fluid, [m2K–1] 

ε – surface emissivity of fin, [–] 
θ – non-dimensional temperature, [–] 
θa – dimensionless ambient temperature, [–] 
θm – mth-order approximation, [–] 
νf – kinematic viscosity of the ambient  

fluid, [m2s–1] 
ρf – density of the ambient fluid, [kgm–3] 
σ – Stefan-Boltzmann constant, [Wm–2K–4] 
χm – two-valued function, [–]
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