International Scientific Journal


Cynara cardunculus, commonly known as cardoon is a potential energy crop native to the Mediterranean region with high production yields reported. The aim of this work is to present an overview on the contradicting agronomic data available for cardoon and its potential exploitation in industrial thermochemical (i.e. combustion and gasification) applications. Moreover, experimental work on cardoon gasification is presented, focusing on the agglomeration problems it causes when using it in fluidized bed gasifiers. Cardoon cultivated in Greece was gasified in a 100 kW thermal atmospheric circulating fluidized bed gasifier (ACFBG). Due to high ash content (rich in potassium) defluidization was observed at low temperatures (780°C) during the first 30 minutes after the fuel feeding begun. The agglomerates are investigated with SEM/EDS in an effort to determine the gluing mechanism. The particular cardoon was rich in calcium, and this was apparent in the rich in silicates resolidified melt.
PAPER REVISED: 2013-08-22
PAPER ACCEPTED: 2013-09-04
CITATION EXPORT: view in browser or download as text file
  1. Maniatis, K., and Millich, E., Energy from biomass and waste: The contribution of utility scale biomass gasification plants, Biomass and Bioenergy, 15(1998), 3, pp. 195-200.
  2. Aresta, M., Dibenedetto, A., and Dumeignil, F., Biorefinery: From biomass to chemicals and fuels, De Gruyter, Berlin, 2012.
  3. Ketikidis, C., and Grammelis, P., Present status of Biomass Production and utilization in Western Macedonia, BIOCLUS workshopBratislava, 2010.
  4. Balat, M., Balat, H., and Öz, C., Progress in bioethanol processing, Progress in Energy and Combustion Science, 34(2008), 5, pp. 551-573.
  5. Demirbas, A., Progress and recent trends in biofuels, Progress in Energy and Combustion Science, 33(2007), 1, pp. 1-18.
  6. Grammelis, P., Malliopoulou, A., Basinas, P., and Danalatos, N. G., Cultivation and characterization of Cynara cardunculus for solid biofuels production in the mediterranean region, International Journal of Molecular Sciences, 9(2008), 7, pp. 1241-1258.
  7. McKendry, P., Energy production from biomass (part 1): overview of biomass, Bioresource Technology, 83(2007), 1, pp. 37-46.
  8. Dalianis, C., Adaptation and Biomass Productivity of Cynara Cardunculus in abandoned. Biomass for Energy and Industry, Ponte PressGermany, 1994, pp. 1235-1240.
  9. Dalianis, C., Panoutsou, C., and Dercas, N., Spanish thistle artichoke Cynara cardunculus L., under greek conditions, Proceedings, the 9th European Bioenergy Conference, Biomass for Energy and Environment, Oxford, 1996, pp. 663-668.
  10. Fernández, J., Curt, M. D., and Aguado, P. L., Industrial applications of Cynara cardunculus L. for energy and other uses, Industrial Crops and Products, 24(2006), 3, pp. 222-229.
  11. Foti, S., Mauromicale, G., Raccuia, S. A., Fallico, B., Fanella, F., and Maccarone, E., Possible alternative utilization of Cynara spp.: I. Biomass, grain yield and chemical composition of grain, Industrial Crops and Products, 10(1999)3, pp. 219-228.
  12. Gherbin, P., Monteleoone, M., and E, T., Five year evaluation on cardoon (Cynara cardunculus L. var. altilis) biomass production in a Mediterranean environment, Italian Journal of Agronomy, 5(2001), pp. 11-19.
  13. Angelini, L. G., Ceccarini, L., Nassi o Di Nasso, N., and Bonari, E., Long-term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use, Biomass and Bioenergy, 33(2009),5, pp. 810-816.
  14. Curt, M. D., Sánchez, G., and Fernández, J., The potential of Cynara cardunculus L. for seed oil production in a perennial cultivation system, Biomass and Bioenergy, 23(2002), 1, pp. 33-46.
  15. Piscioneri, I., Sharma, N., Baviello, G., and Orlandini, S., Promising industrial energy crop, Cynara cardunculus: a potential source for biomass production and alternative energy, Energy Conversion and Management, 41(2000), 10, pp. 1091-1105.
  16. Raccuia, S. A., and Melilli, M. G., Biomass and grain oil yields in Cynara cardunculus L. genotypes grown in a Mediterranean environment, Field Crops Research, 101(2007), 2, pp. 187-197.
  17. Fernández, J., Cynara cardunculus Network, No. 921089, Brussels, 1998.
  18. Gominho, J., Lourenço, A., Curt, M., Fernández, J., and Pereira, H., Characterization of hairs and pappi from Cynara cardunculus capitula and their suitability for paper production, Industrial Crops and Products, 29(2009), 1, pp. 116-125.
  19. Kelly, M., and Pepper, A., Controlling Cynara Cardunculus ( Artichoke, Thistle, Cardoon, etc.), Proceedings, Exotic Pest Plant Council, California, 1996.
  20. Mantineo, M., D'Agosta, G. M., Copani, V., Patanè, C., and Cosentino, S. L., Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment, Field Crops Research, 114(2009), 2, pp. 204-213.
  21. Panoutsou, C., Socio-economic impacts of energy crops for heat generation in Northern Greece, Energy Policy, 35(2007), 12, pp. 6046-6059.
  22. Papazoglou, G., and Rozakis, S., Cardoon cultivation for combined bioenergy production and cadmium phytoextraction: an economic evaluation., Proceedings, Conference CEMEPE & SECOTOX, Skiathos, 2011, pp. 637-642.
  23. Bioenergy chains from perennial crops in South Europe, 2001.
  24. Christou, M., Bioenergy chains from perennial crops in Europe, EU - China workshop on liquid biofuels, Beijing, 2004.
  25. Fernandez, J., Low-cost Biodiesel from Cynara oil, Proceedings, 2nd World Conference and Exhibition on Biomass for Energy, Industry and Climate Protection, 2002.
  26. Encinar, J. M., González, J. F., Sabio, E., and Ramiro, M. J., Preparation and properties of biodiesel from Cynara cardunculus L. oil, Industrial and Engineering Chemistry Research, 38(1999), 8, pp. 2927-2931.
  27. Group., R. Y., Analysis of cynara oil samples,
  28. S.A, D.-F. I.,
  29. Abrantes, S., Amaral, M. E., Costa, A. P., and Duarte, A. P., Cynara cardunculus L. alkaline pulps: Alternatives fibres for paper and paperboard production, Bioresource Technology, 98(2007), 15, pp. 2873-2878.
  30. Quick, G., and Woodmore, P., Vegetable oil esters fuels for diesel engines, Proceedings, Conference on agricultural engineering, Australia, 1984, pp. 173-176.
  31. Benjelloun-Mlayah, B., De Lopez, S., and Delmas, M., Oil and paper pulp from Cynara cardunculus: Preliminary results, Industrial Crops and Products, 6(1997),3-4, pp. 233-236.
  32. Sjöström, E., Wood Chemistry. Fundamentals and Applications, Academic Press, San Diego, 1993.
  33. Vamvuka, D., Production yield and combustion characteristics of cardoon grown as a potential feedstock for energy applications in Greece, Proceedings, 17th European Biomass Conference and Exhibition, Hamburg, 2009.
  34. Antonopoulos, I. S., Karagiannidis, A., Gkouletsos, A., and Perkoulidis, G., Modelling of a downdraft gasifier fed by agricultural residues, Waste Management, 32(2012), 4, pp. 710-718.
  35. Damartzis, T., Vamvuka, D., Sfakiotakis, S., and Zabaniotou, A., 2011, Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA), Bioresource Technology, 102(2011), 10, pp. 6230-6238.
  36. Encinar, J. M., González, J. F., and González, J., 2002, Steam gasification of Cynara cardunculus L.: Influence of variables, Fuel Processing Technology, 75(2002), 1, pp. 27-43.
  37. Gómez, C. J., Mészáros, E., Jakab, E., Velo, E., and Puigjaner, L., Thermogravimetry/mass spectrometry study of woody residues and an herbaceous biomass crop using PCA techniques, Journal of Analytical and Applied Pyrolysis, 80(2007), 2, pp. 416-426.
  38. Karampinis, E., Nikolopoulos, N., Nikolopoulos, A., Grammelis, P., and Kakaras, E., 2012, Numerical investigation Greek lignite/cardoon co-firing in a tangentially fired furnace, Applied Energy, 97(2012), 0, pp. 514-524.
  39. Müller-Hagedorn, M., and Bockhorn, H., Pyrolytic behaviour of different biomasses (angiosperms) (maize plants, straws, and wood) in low temperature pyrolysis, Journal of Analytical and Applied Pyrolysis, 79(2007), (1-2), pp. 136-146.
  40. Saddawi, A., Jones, J. M., and Williams, A., 2012, Influence of alkali metals on the kinetics of the thermal decomposition of biomass, Fuel Processing Technology, 104(2012), 0, pp. 189-197.
  41. Sørum, L., Grønli, M. G., and Hustad, J. E., Pyrolysis characteristics and kinetics of municipal solid wastes, Fuel, 80(2001), 9, pp. 1217-1227.
  42. Vamvuka, D., Salpigidou, N., Kastanaki, E., and Sfakiotakis, S., Possibility of using paper sludge in co-firing applications, Fuel, 88(2009), 4, pp. 637-643.
  43. Vamvuka, D., and Sfakiotakis, S., Effects of heating rate and water leaching of perennial energy crops on pyrolysis characteristics and kinetics, Renewable Energy, 36(2011), 9, pp. 2433-2439.
  44. Vamvuka, D., Topouzi, V., and Sfakiotakis, S., Evaluation of production yield and thermal processing of switchgrass as a bio-energy crop for the Mediterranean region, Fuel Processing Technology, 91(2010), 9, pp. 988-996.
  45. Vamvuka, D., Troulinos, S., and Kastanaki, E., The effect of mineral matter on the physical and chemical activation of low rank coal and biomass materials, Fuel, 85(2006), 12-13, pp. 1763-1771.
  46. Oscar Prado, M., Dutra Zanotto, E., and Müller, R., Model for sintering polydispersed glass particles, Journal of Non-Crystalline Solids, 279(2001), 2-3, pp. 169-178.
  47. Prado, M. O., and Zanotto, E. D., Glass sintering with concurrent crystallization, Comptes Rendus Chimie, 5(2002), 11, pp. 773-786.
  48. Devi, L., Craje, M., Thüne, P., Ptasinski, K. J., and Janssen, F. J. J. G., Olivine as tar removal catalyst for biomass gasifiers: Catalyst characterization, Applied Catalysis A: General, 294(2005), 1, pp. 68-79.
  49. Fryda, L. E., Panopoulos, K. D., and Kakaras, E., Agglomeration in fluidised bed gasification of biomass, Powder Technology, 181(2008), 3, pp. 307-320.
  50. Siedlecki, M., and de Jong, W., Biomass gasification as the first hot step in clean syngas production process - gas quality optimization and primary tar reduction measures in a 100 kW thermal input steam-oxygen blown CFB gasifier, Biomass and Bioenergy, 35, Supplement 1(2011), 0, pp. S40-S62.
  51. Bartels, M., Lin, W., Nijenhuis, J., Kapteijn, F., and van Ommen, J. R., Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention, Progress in Energy and Combustion Science, 34(2008), 5, pp. 633-666.
  52. Grimm, A., Öhman, M., Lindberg, T., Fredriksson, A., and Boström, D., Bed agglomeration characteristics in fluidized-bed combustion of biomass fuels using olivine as bed material, Energy and Fuels, 26(2012), 7, pp. 4550-4559.
  53. Öhman, M., and Nordin, A., A new method for quantification of fluidized bed agglomeration tendencies: A sensitivity analysis, Energy and Fuels, 12(1998), 1, pp. 90-94.

© 2019 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence