International Scientific Journal


A three-dimensional computational fluid dynamics simulation of a vortex tube has been carried out to realize the effects of operating pressure. The highly rotating flow field structure and its characteristic are simulated and analyzed with respect to various operating inlet pressure ranges. Numerical results of compressible and turbulent flows are derived by using of the standard k-ε turbulence model, where throughout the vortex tube was taken as a computational domain. The main object of the present research is to focus on the importance of identifying the suitable inlet gas pressure corresponds to used vortex tube geometry. Achieving a highly swirling flow and consequently maximum cold temperature difference were the key parameters of judgment. The results revealed that these acceptable conditions of machine performance can be provided when the inlet operating pressure is appropriate both to mechanical structure of machine and physical properties of working fluid. The stagnation point location in the axial distance of vortex tube and Mach number contours in the vortex chamber as additional information are extracted from flow filed; such that interpretation of shock wave formation regions may be accounted as significant features of investigation. Finally, some results of the CFD models are validated by the available experimental data and shown reasonable agreement, and other ones are compared qualitatively.
PAPER REVISED: 2011-12-28
PAPER ACCEPTED: 2012-02-08
CITATION EXPORT: view in browser or download as text file
  1. Ranque, G.J., Experiences Sur la Détente Giratoire Avec Simultanes d'un Echappement d'air Chaud et d'un Enchappement d'air Froid, J. Phys.Radium, 4 (1933), pp. 112-114
  2. Hilsch, R., Die Expansion Von Gasen im Zentrifugalfeld als Kälteproze, Z. Naturforschung 1(1946), pp. 208-214
  3. Elser, K., Hoch, M., Das Verhalten Verschiedener Gase und die Trennung von Gasgemischen in einem Wirbelrohr, Z. Naturf 6a(1951), pp. 25-31
  4. Martynovskii, V.S., Alekseev, V.P., Investigation of The Vortex Thermal Separation Effect For Gasses and Vapors, Soviet Physics, (1957), pp. 2233-2243
  5. Takahama, H., Studies on Vortex Tube, Bull. JSME, 8(1965), pp. 433-440
  6. Bruun, H.H., Experimental Investigation of The Energy Separation in Vortex Tubes, Journal of Mechanic Engineering Science, 11(1969), pp. 567-582
  7. Skye, H.M., Nellis, G.F., Klein, S.A., Comparison of CFD Analysis to Empirical Data in a Commercial Vortex Tube. Int. J. Refrig., 29 (2006), pp. 71-80
  8. Fulton, C.D., Ranque's Tube, J Refrig Eng., 5 (1950), pp. 473-479
  9. Deissler, R.G., Perlmutter, M., Analysis of The Flow and Energy Separation in a Vortex Tube, International Journal of Heat Mass Transfer, 1 (1960), pp. 173-191
  10. Young, J., Mc Cutcheon, A.R.S., The Performance of Ranque-Hilsch Vortex Tube, The Chemical Engineering, (1973), pp. 522-528
  11. Ahlborn, B., Keller, J.U., Staudt, R., Treitz, G., Rebhan, E., Limits of Temperature Separation in a Vortex Tube, Journal of Physics D: Appl. Phys., 27 (1994), pp. 480-488
  12. Stephan, K., Lin, S., Drust, M., An Investigation of Energy Separation in a Vortex Tube, International Journal of Heat Transfer, 3 (1993), pp. 341-348
  13. Stephan, K., Lin, S., Drust, M., Seher, D., A Similarity Relation For Energy Separation in a Vortex Tub, Int. J. of Heat Mass Transfer, 6 (1984), pp. 911-920
  14. Dincer, K., Baskaya, s., Uysal, Z., Experimental Investigation of The Effects of Length to Diameter Ratio and Nozzle Number on The Performance Counter Flow Ranque-Hilsch Vortex Tubes, Int. J. of Heat Mass Transfer,44 (2008), pp. 367-373
  15. Kirmaci Volkan, Optimization of Counter Flow Ranque-Hilsch Vortex Tube Performance Using Taguchi Method, International Journal of Refrigeration, 32 (2009), pp.1487-1494
  16. Akhesmeh, S., Pourmahmoud, N., Sedgi, H., Numerical Study of The Temperature Separation in The Ranque-Hilsch Vortex Tube, American Journal of Engineering and Applied Sciences, 3 (2008), pp. 181-187
  17. Bramo, A.R., Pourmahmoud, N., A Numerical Study on The Effect of Length to Diameter Ratio and Stagnation Point on The Performance of Counter Flow Vortex Tube, Aust. J. Basic & Appl. Sci., 4 (2010), pp. 4943-4957
  18. Bramo, A.R., Pourmahmoud, N., CFD Simulation of Length to Diameter Ratio Effect on The Energy Separation in a Vortex Tube, Thermal Science journal, In Press.
  19. Pourmahmoud, N., Bramo, A.R., The Effect of L/D Ratio on The Temperature Separation in The Counter Flow Vortex Tube , IJRRAS, 6 (2011), pp. 60-68
  20. Pourmahmoud, N., Hassan Zadeh, A., Moutaby, O., Bramo, A.R., CFD Analysis of Helica Nozzles Effects on the Energy Separation in a Vortex Tube, Thermal Science journal, In Press.
  21. Aydin, O., Baki, M., An Experimental Study on The Design Parameters of a Counterflow Vortex Tube, ENERGY, 31 (2006), pp. 2763-2772
  22. Kirmaci, V., Uluer, O., An Experimental Investigation of The Cold Mass Fraction, Nozzle Number, and Inlet Pressure Effects on Performance of Counter Flow Vortex Tube, Journal of Heat Transfer, 131 (2009), pp. 603-609
  23. Ameri, M., Behnia, B. The study of Key Design Parameters Effects on The Vortex Tube Performance, Journal of Thermal Science, 4 (2009), pp. 370−376
  24. Zhidkov, M. A., Komarova, G. A., Gusev, A. P., Iskhakov, R. M., Interrelation Between The Separation and Thermodynamic Characteristics of Three-Flow Vortex Tubes, Chemical and Petroleum Engineering, 37 (2001), pp. 271-277
  25. Wu, Y.T. et al., Modification and Experimental Research on Vortex Tube, International Journal of Refrigeration, 30 (2007), pp. 1042-1049

© 2019 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence