THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

HEAT TRANSFER FROM A ROTATING CIRCULAR CYLINDER IN THE STEADY REGIME: EFFECTS OF PRANDTL NUMBER

ABSTRACT
In this work, effects of Prandtl number on the heat transfer characteristics of an unconfined rotating circular cylinder are investigated for varying rotation rate (α = 0 - 5) in the Reynolds number range 1 - 35 and Prandtl numbers range 0.7 - 100 in the steady flow regime. The numerical calculations are carried out by using a finite volume method based commercial CFD solver FLUENT. The isotherm patterns are presented for varying values of Prandtl number and rotation rate in the steady regime. The variation of the local and the average Nusselt numbers with Reynolds number, Prandtl number and rotation rate are presented for the above range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds and Prandtl numbers. With increasing value of the Prandtl number, the average Nusselt number increases for the fixed value of the rotation rate and the Reynolds number; however, the larger values of the Prandtl numbers show a large reduction in the value of the average Nusselt number with increasing rotation rate.
KEYWORDS
PAPER SUBMITTED: 2010-09-14
PAPER REVISED: 2011-05-07
PAPER ACCEPTED: 2011-06-04
DOI REFERENCE: https://doi.org/10.2298/TSCI100914057S
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2012, VOLUME 16, ISSUE Issue 1, PAGES [79 - 91]
REFERENCES
  1. Zukauskas, A., Convective Heat Transfer in Cross Flow. In: Zukauskas, A., Kakac, S., Shah, R. K., Aung, W. (Eds): Handbook of Single-Phase Convective Heat Transfer. Wiley, New York, 1987, pp. 6.1 - 6.45
  2. Morgan, V. T., The Overall Convective Heat Transfer From Smooth Circular Cylinders, Adv. Heat Transfer, 11 (1975) pp. 199 - 264
  3. Dennis, S.C.R., Hudson, J.D., Smith, N., Steady Laminar Forced Convection From a Circular Cylinder at Low Reynolds Numbers, Phys. Fluids, 11 (1968) pp. 933-940
  4. Chang, M.W., Finlayson, B.A., Heat Transfer in Flow Past Cylinders at Re <150 - Part I. Calculations for Constant Fluid Properties, Num. Heat Transf., 12 (1987) pp. 179 - 195
  5. Sanitjai, S., Goldstein, R. J., Heat Transfer From a Circular Cylinder to Mixtures of Water and Ethylene Glycol, Int. J. Heat Mass Transf., 47 (2004) pp. 4785 - 4794
  6. Sanitjai, S., Goldstein, R.J., Forced Convection Heat Transfer From a Circular Cylinder in Crossflow to Air and Liquids, Int. J. Heat Mass Transf., 47 (2004) pp. 4795-4805
  7. Bharti, R.P., Chhabra, R.P., Eswaran, V., A Numerical Study of the Steady Forced Convection Heat Transfer From an Unconfined Circular Cylinder, Heat Mass Transf., 43 (2007) pp. 639-648
  8. Badr, H.M., Dennis, S.C.R., Young, P.J.S., Steady and Unsteady Flow Past a Rotating Circular Cylinder at Low Reynolds Numbers, Comput. Fluids, 17 (1989) pp. 579-609
  9. Ingham D. B., Tang T., A Numerical Investigation into the Steady Flow Past a Rotating Circular Cylinder at Low and Intermediate Reynolds Numbers, J. Computational Physics, 87 (1990) 91-107.
  10. Kang, S., Choi, H., Lee, S., Laminar Flow Past a Rotating Circular Cylinder, Phys. Fluids, 11 (1999) pp. 3312-3321
  11. Stojkovic, D., Breuer, M., Durst, F., Effect of High Rotation Rates on the Laminar Flow Around a Circular Cylinder, Phys. Fluids, 14 (2002) pp. 3160-3178
  12. Mittal, S., Kumar, B., Flow Past a Rotating Cylinder, J. Fluid Mech. 476 (2003) pp. 303-334
  13. Panda, Saroj K., Chhabra, R. P., Laminar Flow of Power-Law Fluids Past a Rotating Cylinder, J. Non-Newt. Fluid Mech., 165 (2010) 1442 - 1461
  14. Badr, H.M., Dennis, S.C.R., Laminar Forced Convection From a Rotating Cylinder, Int. J. Heat Mass Transf., 28 (1985) pp. 253-264
  15. Mahfouz, F. M., Badr, H. M., Heat Convection From a Cylinder Performing Steady Rotation or Rotary Oscillation - Part I: Steady Rotation, Heat and Mass Transf., 34 (1999) pp. 365-373
  16. Yan, Y. Y., Zu, Y. Q., Numerical Simulation of Heat Transfer and Fluid Flow Past a Rotating Isothermal Cylinder - A LBM Approach, Int. J. Heat Mass Transf., 51 (2008) pp. 2519-2536
  17. Kendoush, A.A., An Approximate Solution of the Convection Heat Transfer From an Isothermal Rotating Cylinder, Int. J. Heat Fluid Flow, 17 (1996) pp. 439-441
  18. Paramane, S. B., Sharma, A., Numerical Investigation of Heat and Fluid Flow Across a Rotating Circular Cylinder Maintained at Constant Temperature in 2-D Laminar Flow Regime, Int. J. Heat and Mass Transf., 52 (2009) pp. 3205-3216
  19. Paramane Sachin B., Sharma Atul, Heat and Fluid Flow Across a Rotating Cylinder Dissipating Uniform Heat Flux in 2D Laminar Flow Regime, Int. J. Heat Mass Transf., 53 (2010) 4672-4683.
  20. Nobari M.R.H., J. Ghazanfarian, Convective Heat Transfer from a Rotating Cylinder with Inline Oscillation, Int. J. Thermal Sciences, 49 (2010) 2026-2036.
  21. Nemati Hasan, Farhadi Mousa, Sedighi Kurosh, Fattahi Ehsan, Multi- Relaxation-Time Lattice Boltzman Model for Uniform-Shear Flow over a Rotating Circular Cylinder, Thermal Sci., 2010, doi: 10.2298/TSCI100827082N.
  22. Yoon H. S., Seo J. H., Kim J. H., Laminar Forced Convection Heat Transfer Around Two Rotating Side-By-Side Circular Cylinder, Int. J. Heat Mass Transf., 53 (2010) Pages 4525-4535.
  23. Moshkin Nikolay Pavlovich, Sompong Jakgrit, Numerical Simulation of Flow and Forced Convection Heat Transfer, Suranaree J. Sci. Technol., 17(1) (2009) 87-104.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence