THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

On generalized local fractal calculus associate with gauge integral and applications

ABSTRACT
In this work, a new integral so called *Fα-integral with respect to local fractal derivatives are introduced. Several properties of *Fα-integrals are discussed. Fundamental theorem for *Fα-integrable functions is also introduced. A relationship of Fα and *Fα integral is shown. Finally, as an application we solve fractal differential equation Dα F (SαF(x)) = f (t, Sα F (x)) with Sα F (τ) = ξ in sense of *Fα-integral.
KEYWORDS
PAPER SUBMITTED: 2024-07-19
PAPER REVISED: 2024-12-01
PAPER ACCEPTED: 2024-12-26
PUBLISHED ONLINE: 2025-02-16
DOI REFERENCE: https://doi.org/10.2298/TSCI240719003K
REFERENCES
  1. Barnsley M. F., Harrington Andrew N., The Calculus of Fractal interpolation Functions, Journal of Approximation theory, 57, 14-34 (1989)
  2. Falconer J. J., The geometry of fractal sets, Cambridge tracts in Mathematics, (1985)
  3. Gordon N. L., Rood B., Introducing Fractal Geometry, Icon Books, (2000)
  4. Gordon R. G., The integrals of Lebesgue, Denjoy, Perron and Henstock, American Mathematical Society, (1994)
  5. Golmankhaneh A. K., Baleanu D., On a new measure on fractals, Journal of Inequalities and Applications., 522, 1-10, (2013)
  6. Golmankhaneh A. K., Fractal Calculus and its application: Fα- Calculus, World Scientific Publishing Co. Pte. Ltd., (2023)
  7. Golmankhaneh A. K., Baleanu D., Fractal calculus involving gauge function, Commun Nonlinear Sci Numer Simulat., 37, 125-130, (2016)
  8. Golmankhaneh A. K., Ali K. K., Yilmazer R., Kaabar M. K. A., Local fractal Fourier transform and applications, Computational Methods for Differential Equations., 10 (3), 595-607, (2022)
  9. Golmankhaneh A. K., Jorgensen P. E. T., Serpa C., About Sobolev spaces on fractals: fractal gradians and Laplacians. Aequat. Math., 1-17, (2024). doi.org/10.1007/s00010-024-01060-6
  10. Jorgensen P. E., Analysis and Probability: Wavelets, Signals, Fractals, vol. 234, Springer Science & Business Media, (2006)
  11. Lee P. Y., Vyborny R., Integral: An Easy Approach after Kurzweil and Henstock, Cambridge University Press, Cambridge, (2000)
  12. Mandelbrot B. B., The Fractal Geometry of Nature, WH Freeman, New York, (1982)
  13. Majumder M., Nanoscale Hydrodynamics-Enhanced Flow in Carbon Nanotubes, Nature, 438, 1-44, (2005)
  14. Massopust P. R., Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, 2017
  15. Parvate A., Gangal A. D., Calculus on fractal subsets of real line-i: Formulation, Fractals 17 (01), 53-81, (2009)
  16. Rogers C. A., Hausdorff Measures, Cambridge University Press, (1998)
  17. Wua Z. H., Debbouche A., Juan L. G. Guirao, Yang X. J., On local fractal Volterra integral equations in fractal heat transfer, Thermal Science, 1-7, (2016)