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Abstract
In this work, a new integral so called ∗Fα-integral with respect to local fractal derivatives are in-

troduced. Several properties of ∗Fα-integrals are discussed. Fundamental theorem for ∗Fα-integrable
functions is also introduced. A relationship of Fα and ∗Fα integral is shown. Finally, as an appli-
cation we solve fractal differential equation Dα

F

(
Sα
F (x)

)
= f

(
t, Sα

F (x)
)

with Sα
F (τ) = ξ in sense of

∗Fα-integral.
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1 Introduction

In the real-line domain, Riemann defined the integration of functions, which has several applications in
science, physics, and engineering. It turned out that Riemann’s definition of the integral was not without
flaws. For instance, Riemann’s formulation limits the integration of all derivatives. In order to address
these shortcomings, Lebesgue redefined integration. Lebesgue’s approach is intricate, requiring a significant
amount of measure theory. Later J. Kurzweil, during the 1958’s introduced a generalized version of Riemann
Integral and Henstock during the 1960’s made the first systematic study of this new integral. This new
integration technique is so powerful that it includes every function the others can integrate and the added
advantage is its simplicity compared to the other integrals [4]. Since both Henstock and Kurzweil gave
independently minute yet ingenious modification to the classical Riemann Integral while obtaining equivalent
real-valued integral, this integral is named the Henstock-Kurzweil integral. This integral can handle a wider
class of functions, including those with unbounded variation and certain types of discontinuities that are not
Lebesgue integrable. The Henstock-Kurzweil integral retains the intuitive appeal of the Riemann integral
while extending its applicability significantly. Henstock and Kurzweil just modified the conventional (ε− δ)

definition of the Riemann integral by substituting a strictly positive function known as the gauge for the
constant δ. This is why Henstock-Kurzweil integrals are also known as gauge integrals.

A geometric object with intricate structure at arbitrary tiny scales is called a fractal [12]. Fractal geome-
try is a field that was founded by Benoit Mandelbrot and deals with shapes that have fractal dimensions larger
than their topological dimensions [2, 10]. Complex fractals are self-similar and often show complicated and
non-integer dimensions [14]. However, the analysis of fractals presents challenges, given that traditional
geometric measures such as Hausdorff measure [3], length, surface area, and volume are typically applied
to standard shapes [16]. Fractal sets are those whose Hausdorff dimension strictly surpasses the topological
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dimension [6]. In many engineering applications, including porous media modelling, nanofluids, fracture
mechanics, and many more, fractals are used at the nanoscale [13]. In these applications, the fractal nature
of the objects must be taken into consideration because different transport phenomena cannot be described
by a smooth continuum approach. Since the structure of fractals is non-differentiable, standard calculus
cannot be applied to them. A. Parvate et al. [15] discussed Riemann type integrals on fractal sets. Haus-
dorff measure is a suitable measure for fractal geometry, is not appropriate for fractal calculus. Alireza K.
Golmankhaneh et al. [5] introduced a new measure using the gauge function on fractal sets that gives a finer
dimension in comparison with the Hausdorff and box dimension. Recently, Alireza K. Golmankhaneh et
al. [7] present a generalized fractal calculus for irregular functions on fractal sets in associate with gauge
integrable functions.

We motivated to find more generalized definition of Fα-integrals of fractal calculus [7] without the
assumption Sch(f) is contained in α-perfect set.

The article is organized as follows: In Section 2, we recall several definitions and results of fractal
calculus. In Section 3, we define generalized Fα-integral so called ∗Fα integrals on [a, b] with out the re-
striction of Sch(f) is contained in α-perfect set. Several properties of ∗Fα integrable functions have been
covered. A suitable fundamental theorem of calculusare presented for ∗Fα integrable functions. Relation-
ship of Fα and ∗Fα integrable functions are discussed. In Section 4, we solve fractal differential equation
Dα

FS
α
F (x) = f

(
t, Sα

F (x)
)

with Sα
F (τ) = ξ in sense of ∗Fα-integral. We state counter example to show that

our solutions are not necessarily Fα integrable functions.

2 Preliminaries

Throughout the article, we denote N be set of natural numbers, R set of real numbers, and F ⊂ [a, b] be
a fractal set. In our work [a, b] ⊂ R. If f is not constant over any open interval (a, b) including x, then a
point x is a point of change of a function f. The set of change of f is the set of all points of change of f ;
it is represented by the symbol Sch(f). For better captures the scaling behavior of fractal sets and aligns
with established fractal calculus principles we consider fractal summation measure. Let 0 < α < 1. The
α-dimensional fractal summation measure of [a, b] ⊂ R is defined as

Hα([a, b]) = inf

{ ∞∑
i=1

(
Γ(α+ 1)(xi − xi−1)

α whenever [a, b] ⊂
∞⋃
i=1

[ai, bi]

}
.

Hα(.) is a Borel regular measure and

Hα([a, b]) = inf{α : Hα(F, a, b) = 0} = sup{α : Hα(F, a, b) = ∞}

is called α-dimension of [a, b]. We called any α-set E ⊂ [a, b] to be Hα-measurable if 0 < Hα(E) < ∞.

Recall F -limits, and F -continuous function as below:
Definition 2.1 [6, Definition 4.11] Let F ⊂ R, f : R → R and x ∈ F. A number l is called the limit of
f through the points of F, or simply F -limit of f, as y → x, if for given any ϵ > 0, there exists δ > 0

such that y ∈ F, & |y − x| < δ implies |f(y) − f(x)| < ϵ. If such a number exists, then it is denoted by
l = F - lim

y→x
f(y).
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Definition 2.2 [6, Definition 4.12] A given function f : [a, b] → R is called F -continuous if f(x) =

F - lim
y→x

f(y).

When x ∈ F ⊂ [a, b] and It is very clear that every continous function is F -continous but inverse may not
true (see [15]). Let f : [a, b]× R → R. We call f is Carathódory function if

1. f(t, x) is fractal summation measure;

2. f(t, x) is F -continuous for almost every t ∈ F ⊂ [a, b];

3. f(t, x) is bounded on [a, b].

Recall the definition of a flag function for F as below:
Definition 2.3 [6, Definition 4.1] The flag function for a thin fractal sets F and a closed interval I =

[a, b], a < b ∈ R is defined by

θ(F, I) =


1, if F ∩ I ̸= ∅

0, otherwise.
Definition 2.4 [6, Definition 4.3] For a given set F we consider a sub-division P[a,b], which is a finite set of

points
{
a = x0, x1, ..., xn = b

}
. The fractal summation is σα[F, I] =

n∑
i=1

Γ(α+ 1)(xi − xi−1)
αθ(F, [Ii]),

where Ii = [xi−1, xi] & 0 < α ≤ 1, and σα[F, I] ≤ 1.

Definition 2.5 [6, Definition 4.4] The mass function γα(F, a, b) = lim
δ→0

inf lim
P[a,b]: |P |≤δ

σα[F, I] where |P | =

max lim
1≤i≤n

(xi − xi−1).

Definition 2.6 [6, 15] The integral staircase function Sα
F (x) corresponding for the set F is

Sα
F (x) =


γα(F, a0, x), if x ≥ a0

−γα(F, a0, x), otherwise
where a0 is a fixed and real number. The γ-dimension of F ∩ [a, b] is defined as

dimγ(F ∩ [a, b])(F ∩ [a, b]) = inf

{
α : γα(F, a, b) = 0

}
= sup

{
α : γα(F, a, b) = ∞

}
where α = dimγF & Sα

F (x) is finite for all x ∈ R.
Definition 2.7 [15] Let f : [a, b] → R be given function then the right and left Dα

+F -derivative of f(x) at
x ∈ F is defined as follows: for given ε > 0 there exists δε(t) > 0 such that y ∈ F, 0 < y − x < δε(x)

implies
∣∣ f(y)−f(x)
Sα
F (y)−Sα

F (x) −Dα
+F f(x)

∣∣ < ε. The left Dα
−F -derivative of f(x) at x ∈ F is defined as follows: for

given ε > 0 there exists δε(t) > 0 such that y ∈ F, 0 < x−y < δε(x) implies
∣∣ f(y)−f(x)
Sα
F (y)−Sα

F (x) −Dα
−F f(x)

∣∣ <
ε. If Dα

−F f(x) = Dα
+F f(x) then f(x) is local fractal differentiable and

Dα
F f(x) =


F − lim

y→x

f(y)−f(x)
Sα
F (y)−Sα

F (x) , if x ∈ F

0, otherwise,

where Sα
F (x) is integral staircase function.
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Theorem 2.8 [15, Lemma 48] The Fα-derivative of a constant function f : R → R, f(x) = k ∈ R is zero
(i.e. Dα

F (f) = 0).

Theorem 2.9 [15, Lemma 49] The derivative of the staircase integral itself is the characteristic function χF

of F i.e.
(
Dα

F (S
α
F (x)) = χF (x)

)
.

Recall Fα-integral of f on I from [6, 15] as follows:
Definition 2.10 [15, Definition 37] Let f be a bounded function on F. We called f to be Fα-integrable on

I if
∫ b
a fdαF =

∫ b̄
a fdαF where

∫ b
a fdαF = supLα(f, F, P ), Lα(f, F, P ) =

n∑
i=1

m[f, F, [Ii]] and
∫ b̄
a fdαF =

inf Uα(f, F, P ) =
n∑

i=1
M [f, F, [Ii]] of

M [f, F, [Ii]] =


sup

x∈F∩[Ii]
f(x), if F ∩ I ̸= ∅

0, otherwise

and

m[f, F, [Ii]] =


inf

x∈F∩[Ii]
f(x), if F ∩ I ̸= ∅

0, otherwise.
Fα-integral is a Riemann type integrals. It is very clear from the definition that Fα-integral maintain linear-
lity and sub-additive property. The F -derivative of a given function f : [a, b] → R is defined as follows.

The Fα-integrable functions full fill following fundamental theorem of Calculus.
Theorem 2.11 1. [15, Theorem 54](First fundamental theorem) Let F ⊂ R be an α-perfect set. If f is

bounded and F -continuous on F ∩ [a, b] and g(x) =
∫ x
a f(x)dαF (x) ∀ x ∈ [a, b] then Dα

F (g(x)) =

f(x)χF (x).

2. [15, Theorem 55] (Second fundamental theorem) Let f : [a, b] → R be F -continous, Fα-differentiable
such that Sch(f) ⊂ F and h : [a, b] → R be F -continuous such that h(x)χF (x) = Dα

F (f(x)). Then∫ b
a h(x)dαFx = f(b)− f(a).

3 ∗F α integrable functions

In this Section, we define ∗Fα-integral with more general sense. Several properties of ∗Fα-integrable func-
tions are discussed here. Further we establish relationship of Fα and ∗Fα-integrable functions. In order to

define ∗Fα-integrable functions, let P̂ =

{
([ai, bi], ti) : i = 1, 2, ..., n

}
=

{
([ai, bi], ti)

}n

i=1

be a partition

on I. The partition P̂ is δ-fine if [ai, bi] ⊂ [ti − δ(ti), ti + δ(ti)]. Suppose P̂ be a δ-fine partition of I. We
define the fractal summation

σα
∗ [F, I] =

n∑
i=1

Γ(α+ 1)(xi − xi−1)
αθ(F, [Ii]) provided the right side exists.

Next, using gauge function, we define the generalized coarse grained mass function of F∩I by ∗γαδ(t)(F, a, b) =
inf lim

|P̂ |<sup{δ(ti): ti∈[xi−1,xi]
σα
∗ [F, I], where |P̂ | = max lim

1≤i≤n
(xi − xi−1). The generalized mass function
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∗γα(F, a, b) = lim
sup{δ(ti): ti∈[xi−1,xi]}→0

∗γαδ(t)(F, a, b). By using the gauge function, the generalized integral

straircase function ∗Sα
F (x) of order α for a given set F as

∗Sα
F (x) =


∗γα(F, a0, x), if x ≥ a0

− ∗ γα(F, a0, x), otherwise

The ∗γ-dimension of F ∩ I, indicated as dim∗γ(F ∩ I) and is defined by

dim∗γ(F ∩ I)(F ∩ I) = inf

{
α : ∗γα(F, a, b) = 0

}
= sup

{
α : ∗γα(F, a, b) = ∞

}
.

It is known that ∗γ-dimension is less than γ-dimension [7, 15].
Let ∗Sα

F (x) be finite for x ∈ F ∩ I, P̂ is a δ-finite partition on I. For a function f : R → R is contained

in α-perfect set F, the generalised Riemann sum of f corresponding to P̂ is S(f, P̂ ) =
n∑

i=1
f(ti)

(
∗Sα

F (xi)−

∗Sα
F (xi−1)

)
, ti ∈ [xi−1, xi].

Definition 3.1 [7] A function f : I → R having property that Sch(f) is contained in α-perfect set F is
called Gauge integrable (∗Fα-integrable) on F ∩ I, if there exists a number C ∈ R so that for every ε > 0

there exists a gauge δε on I such that if P̂ is δε-fine on I then
∣∣S(f, P̂ )− C

∣∣ ≤ ε. Here C =
∫ b
a f(x)dαFx.

We start the section with Cousin’s Lemma in our setting.
Lemma 3.2 If δε is a gauge on F ∩ I then there exists a δ-fine partition of F ∩ I.

Proof: The proof is similar to [11, Theorem 2.31] that used on the real line.
Let us remove the restriction Sch(f) ⊂ F. Then for a function f : I → R, with α-perfect set F ⊂ I, the

generalized Riemann sum of f corresponding to P̂ is S(f, P̂ ) =
n∑

i=1
f(ti)

(
∗ Sα

F (xi) − ∗Sα
F (xi−1)

)
, ti ∈

[xi−1, xi] is remain same. If the generalized Riemann sum exists, we refine the definition of ∗Fα-integrable
function as below.
Definition 3.3 A function f : I → R called Gauge integrable (∗Fα-integrable) on F ∩ I, if there exists
a number C ∈ R so that for every ε > 0 there exists a gauge δε on I such that if P̂ is δε-fine on I then∣∣S(f, P̂ )− C

∣∣ ≤ ε. Here C =
∫ b
a f(x)dαFx.

The uniqueness of ∗Fα-integrability of f : I → R is follows from the definition. Let f : I → R be
∗Fα-integrable functions on I. Let [a, x] ⊂ F ∩ I, then Ξ(x) =

∫ x
a f(x)dαFx is called a primitive of f on

[a, x]. It is not hard to see Ξ(x) = ∗Sα
F (x). It is clear from the definition: Fα-integrable function are ∗Fα-

integrable. The following example shows that ∗Fα-integrable function are not necessarily Fα-integrable.
Example 3.4 Consider a discontinuous function as

f(x) =


1, if x ∈ {I ∩Q ∩ F (cantor set)}

0, otherwise
where Q is set of rational number and f(x) is discontinuous at every point of I.

5



Definition 3.5 [9, Definition 7] A function f : I → R is consider to be fractal absolutely continuous on I if
for a given ε > 0, there exists a δ > 0 such that whenever a finite sequence of pairwise disjoint sub intervals
[ak, bk] of I is given, where w−1(ak) < tk = w−1(bk) the following condition holds:

∑
k

∣∣ ∗ Sα
F (bk) −

∗Sα
F (ak)

∣∣ < δ implies
∑
k

∣∣f(bk)− f(ak)
∣∣ < ε. We denote fractal absolutely continuity is ACF .

We define generalized fractal absolutely continuous, fractal bounded variation and generalized fractal
absolutely continuous functions in restricted sense as follows.
Definition 3.6 1. A function f : I → R is called generalized fracal absolutely continuous on [ak, bk]

if f|[ak,bk]
is F -continuous on [ak, bk] and [ak, bk] can be written as a countable union of sets on I in

which f is fractal absolute continuous.

2. Let us define the oscillation of ∗Sα
F on I by h

(
∗ Sα

F , [ak, bk]

)
= sup

{
| ∗ Sα

F (bk)− ∗Sα
F (ak)| : a ≤

ak ≤ bk ≤ b

}
. The fracal weak variation and fracatal strong variation of Sα

F are defined by

VF (∗Sα
F , [ak, bk]) = sup

{ n∑
k=1

| ∗ Sα
F (bk)− ∗Sα

F (ak)|
}

and

VF,∗(∗Sα
F , [ak, bk]) = sup

{ n∑
k=1

h

(
Sα
F , [ak, bk]

)}
where the supremum is taken over all possible finite collections of non-overlapping sub intervals
[ak, bk]. A given function f : I → R fractal bounded variation on [ak, bk] ⊂ I if VF (∗Sα

F , [ak, bk])

is finite. The given function f : I → R is called fractal bounded variation in the restricted sense on
[ak, bk] if VF,∗(∗Sα

F , [ak, bk]) is finite.

3. We say f is fractal absolutely continuous on [ak, bk] in the restricted sense ACF,∗, if for each ε > 0

there exists a δ > 0 such that for every sequence of pairwise disjoint intervals
{
[ak, bk] : 1 ≤ k ≤ n

}
ends points are in [ak, bk] and

∑
k

(∗Sα
F (bk)− ∗Sα

F (ak)) < δ then
∑
k

h
(
∗ Sα

F , [ak, bk]
)
< ε.

4. We say f is generalized fracal absolutely continuous in restricted sense (ACGF,∗) in [ak, bk] if f|[ak,bk]

is F -continuous and [ak, bk] is a countable union of sets
{
[ak, bk]

}n

k=1

such that f is ACF,∗ on each

[ak, bk].

Theorem 3.7 Let f : I → R and E ⊆ I.

1. If f is ACF (ACGF ) on E, then f is BVF (BV GF ) on E.

2. If f is ACF,∗(ACGF,∗) on E then f is BVF,∗(BV GF,∗) on E.

3. If f is BVF,∗ on E, then f is BVF,∗ on E, where E is closure of E.

4. Suppose f|E is F -continuous on E. If f is BVF , ACF , ACF,∗ on E, then f is BVF , ACF , ACF,∗ on
E.
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Proof: For (1) : Corresponding to ε > 0, choose δ > 0 so that
n∑

k=1

| ∗Sα
F (bk)−∗Sα

F (ak)| < ε whenever{
[ak, bk] : 1 ≤ k ≤ n

}
is any collection of non-overlapping intervals in I satisfying

n∑
k=1

|f(bk)− f(ak)| <

δ. Since VF (S
α
F , I) =

n∑
k=1

VF (∗Sα
F , [ak, bk]). So, by [15, Theorem 16]

VF (S
α
F , I) = sup

{ n∑
k=1

| ∗ Sα
F (bk)− ∗Sα

F (ak)|

= sup

{ n∑
k=1

| ∗ γα(F, ak, bk)|

whenever ak, bk ∈ (a, b) ⊂ I with ak < bk. Since F ∩ (ak, bk) = ∅, by [15, Lemma 9], sup
{

n∑
k=1

| ∗

γα(F, ak, bk)| = 0 < ∞. So, f is of BVF on E. Similar way we can proof for ACGF .

The proof of (2) is analogous to (1).

For (3): Since f is BVF,∗ on E, it is bounded on E. Say it is bounded by M. Let
{
[ak, bk] : 1 ≤ k ≤ n

}
be a finite collection of non-overlapping intervals that have end points in E. Let

n⋃
k=1

[ak, bk] = I. Let us

construct
{
[ar, br] : 1 ≤ r ≤ p

}
be the collection of intervals [ak, bk], in increasing order, that intersect E,

and let
{
Kj : 1 ≤ j ≤ q

}
be the remaining intervals, also in increasing ordr. For each r, choose a point vr

in E ∩ [ar, br]. By our construction, no two K ′
js are adjacent. Hence, for each j there exists a unique integer

kj such that Kj ⊆ [vkj , vkj+1
]. Let Ir = [ρ, β] for some r in

{
2, 3, ..., p− 1

}
. It is observed that

h(∗Sα
F , [ar, br]) ≤ h(∗Sα

F , [ρ, vk]) + h(∗Sα
F , [vk, β])

≤ h(∗Sα
F , [vk−1, vk]) + h(∗Sα

F , [vk, vk+1]).

We have

n∑
k=1

h(∗Sα
F , [ak, bk]) =

q∑
j=1

h(∗Sα
F ,Kj) +

q∑
r=1

h(∗Sα
F , [ar, br])

≤
q∑

j=1

h(∗Sα
F , [vkj , vkj+1

]) + h(∗Sα
F , [a1, b1])

+ h(∗Sα
F , [ap, bp]) + h(∗Sα

F , [v1, v2]) + 2

p−2∑
k=2

h(∗Sα
F , [vk, vk+1]) + h(∗Sα

F , [vp−1, vp])

≤ VF,∗(∗Sα
F , [ak, bk]) + 2h(∗Sα

F , [ak, bk]) + 2VF,∗(∗Sα
F , [ak, bk])

≤ 3VF,∗(∗Sα
F , [ak, bk]) + 4M.

So, VF,∗(∗Sα
F , E) is finite and the function f is BVF,∗ on E.

For (4): Consider ACF case: Let ε > 0 and choose δ > 0 so that
n∑

k=1

| ∗ Sα
F (bk)− ∗Sα

F (ak)| <
ε
2 whenever
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{
[ak, bk] : 1 ≤ k ≤ n

}
is a finite collection of non overlapping intervals that have end points in E with

n∑
k=1

|f(bk)− f(ak)| < δ. Let
{
[a′k, b

′
k] : 1 ≤ k ≤ n

}
be a finite collection of non overlapping intervals that

have end points in E and satisfy
n∑

k=1

|f(b′k − f(a′k)| < δ. Clearly E is dense in E. Since f|E is F -continuous

on E, there exists a finite collection
{
[ak, bk] : 1 ≤ k ≤ n

}
of non overlapping intervals that have end

points in E such that
n∑

k=1

|f(bk)−f(ak)| < δ,
n∑

k=1

|∗Sα
F (a

′
k)−∗Sα

F (ak)| <
ε
4 , &

n∑
k=1

|∗Sα
F (b

′
k)−∗Sα

F (bk)| <
ε
4 . Then we have

n∑
k=1

| ∗ Sα
F (b

′
k)− ∗Sα

F (a
′
k)| ≤

n∑
k=1

| ∗ Sα
F (b

′
k)− ∗Sα

F (bk)|

+
n∑

k=1

| ∗ Sα
F (bk)− ∗Sα

F (ak)|+
n∑

k=1

| ∗ Sα
F (ak)− ∗Sα

F (a
′
k|

<
ε

4
+

ε

2
+

ε

4
= ε.

Let E ⊆ I such that a = inf E, b = supE. If we compress the sequence of intervals
{
[ak, bk]

}
to

(a, b)\E, then
{
[ak, bk]

}
is called sequence of intervals contiguous to E in I. We denote

∞∑
k=1

h(∗Sα
F ,

̂[ak, bk])

be series of oscillation of f on the intervals contiguous to E in I.

Lemma 3.8 Let E ⊆ I with inf E = a, b = supE. Let us construct
{
[ak, bk]

}
be the sequence of disjoint

intervals contibuous to E in I , then for a given function f : I → R, f

(
∗ Sα

F , I

)
≤ VF (∗Sα

F , E) +

2
∞∑
k=1

f(∗Sα
F ,

̂[ak, bk]).

Proof: Let m = inf

{
f(t) : t ∈ E

}
and M = sup

{
f(t) : t ∈ E

}
. Clearly m ≤ f(t) ≤

M ∀ t ∈ E. Consequently, m − h(∗Sα
F ,

̂[ak, bk]) ≤ f(t) ≤ M + h(∗Sα
F ,

̂[ak, bk]) ∀ t ∈ [ak, bk], and
m− h(∗Sα

F ,
̂[ak, bk]) ≤ f(t) ≤ M + h(∗Sα

F ,
̂[ak, bk]) ∀ t ∈ [a, b]. So,

f(∗Sα
F , I) ≤ M −m+ 2

∞∑
k=1

h(∗Sα
F ,

̂[ak, bk])

≤ VF (f,E) + 2
∞∑
k=1

h(∗Sα
F ,

̂[ak, bk]).

Theorem 3.9 Let E be a bounded, closed set of I and let f : I → R be BVF . Then f is BVF,∗ on E if and

only if the series of the oscillation
n∑

k=1

h

(
∗ Sα

F , [ak, bk]

)
on E is convergent.

Proof: Let
{
[ak, bk]

}n

k=1

be the sequence of intervals contiguous to E in F. If f is BVF,∗ on E then

n∑
k=1

h

(
∗ Sα

F , [ak, bk]

)
< VF,∗(f,E) for all n. Clearly

n∑
k=1

h

(
∗ Sα

F , [ak, bk]

)
is finite.
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Conversely, suppose
n∑

k=1

h

(
∗Sα

F , [ak, bk]

)
is convergent on E. Let f be BVF on E and let

{
Kj : 1 ≤

j ≤ p

}
be a finite collection of non-overlapping intervals that have end points in E. Let

p⋃
j=1

Kj = I. Next,

p∑
j=1

h

(
∗ Sα

F ,Kj

)
≤

p∑
j=1

VF

(
f,E ∩Kj

)
+ 2

∑{
[ak,bk]

}n

k=1
⊆Kj

h

(
∗ Sα

F ,
̂{

[ak, bk]

}n

k=1

)

= VF (∗Sα
F , E)2

∞∑
k=1

h

(
∗ Sα

F ,
̂{

[ak, bk]

}n

k=1

)
< ∞.

So, f is BVF,∗ on E.

3.1 Properties of ∗Fα-integral

In this Section, several properties of ∗Fα-integrable functions are discussed. The following properties of
∗Fα-integral can be prove from the definition of ∗Fα-integral.
Theorem 3.10 1. Let a < b and f be an ∗Fα-integrable function on I. Let c ∈ (a, b). Then f is ∗Fα-

integrable on [a, c] and [c, b]. Further,
∫ b
a f(x)dαFx =

∫ c
a f(x)dαFx+

∫ b
c f(x)dαFx.

2. If f is ∗Fα-integrable on I, λ is a real number, then
∫ b
a λf(x)dαFx = λ

∫ b
a f(x)dαFx.

3. If f and g are ∗Fα-integrable on I, then
∫ b
a

(
f(x) + g(x)

)
dαFx =

∫ b
a f(x)dαFx+

∫ b
a g(x)dαFx.

4. If f and g are ∗Fα-integrable over I, and f(x) ≥ g(x) for all x ∈ F ∩ I, then
∫ b
a f(x)dαFx ≥∫ b

a g(x)dαFx.

Lemma 3.11 If χF (x) is the characteristic function of F ⊂ R, then
∫ b
a χF (x)d

α
Fx = ∗Sα

F (b)− ∗Sα
F (a).

Theorem 3.12 A function f : I → R is ∗Fα-integrable on F ∩ I if and only if for a given ε > 0 there exists
a gauge δε on I such that

∣∣S(f, P̂ )− S(f, Q̂)
∣∣ < ε for each pair of δε-fine tagged partitions P̂ and Q̂ of I.

Proof: Let ε > 0 be given. Since f is ∗Fα-integrable on F ∩ I, there exists a number C ∈ R so that
for every ε > 0 there exists a gauge δε on I so that

∣∣S(f, P̂1)−
∫ b

a
fdαF

∣∣ < ε

2
(1)

whenever P̂1 is δε-fine partition of I. Let P̂ and Q̂ are δε-fine partitions of I , and the triangle inequality(1)
yield

∣∣S(f, P̂ )− S(f, Q̂)
∣∣ ≤ ∣∣S(f, P̂ )−

∫ b

a
fdαF

∣∣+ ∣∣S(f, Q̂)−
∫ b

a
fdαF

∣∣
<

ε

2
+

ε

2
= ε.

Conversely, let for each n ∈ N, let δn be a gauge on I so that
∣∣S(f, Q̂n) − S(f, R̂n)| < 1

n for each
pair of δn-fine partition Q̂n and R̂n of I. Let us define ∆ = min

{
δ1, δ2, ..., δn

}
. Using Lemma 3.2; P̂n
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is tagged partition of I sub-ordinate to δε. Let ε > 0 be given and 1
N < ε where N ∈ N. Consider

n1, n2 ∈ N, and m = min
{
n1, n2

}
≥ N. Clearly P̂n1 and P̂n2 are ∆m-fine tagged partition of I so

that |S(f, P̂n1) − S(f, P̂n2)| < 1
N < ε. So,

{
S(f, P̂n)

}∞

n=1

is Cauchy sequence of real numbers. Say{
S(f, P̂n)

}∞

n=1

→ A as n → ∞. Let P̂ be a ∆N -fine partition of I. Since
{
∆n

}∞
n=1

is non increasing. It

is easy to see ∆n-fine partition P̂n is ∆N -fine for every integers n ≥ N. Thus∣∣S(f, P̂ )−A
∣∣ = lim

n→∞

∣∣S(f, P̂ )− S(f, P̂n)
∣∣

≤ 1

N
= ε.

So, f is ∗Fα-integrable and A =
∫ b
a fdαF .

Next, we prove a Saks Henstock type lemma for ∗Fα integrable functions.
Lemma 3.13 Let f : I → R be ∗Fα-integrable on I and Ξ(x) =

∫ x
a fdαFx, x ∈ I. Let ε > 0 be given. Also

let δε be a choosen positive function on I so that
∣∣∣∣S(f, P̂ )−Ξ(b)

∣∣∣∣ < ε whenever P̂ =

{
(ti, [xi−1, xi] : 1 ≤

i ≤ N

}
is sub-ordinate to δε on I. Then

∣∣∣∣S(f, P̂ )−
∫
P̂
fdαF

∣∣∣∣ ≤ ε and
N∑
i=1

∣∣∣∣S(f, P̂ )−[Ξ(xi)−Ξ(xi−1)]

∣∣∣∣ ≤ 2ε.

Proof: Let
{
Kj : 1 ≤ j ≤ m

}
be the collection of closed intervals I that are contiguous to P̂ . Let ν >

0 and for each j, let P̂j be tagged partition of Kj sub-ordinate to δε and satisfies
∣∣∣∣S(f, P̂j)−

∫
P̂j

fdαF

∣∣∣∣ < ν
m .

Let Q̂ =
m⋃
j=1

P̂j . Then Q̂ is a tagged partition of I sub-ordinate to δε and

∣∣∣∣S(f, P̂ )−
∫
P̂
fdαF

∣∣∣∣ = ∣∣∣∣S(f, P̂ ) +
m∑
j=1

S(f, P̂j)−
∫
P̂
fdαF −

m∑
j=1

∫
P̂j

fdαF +
m∑
j=1

[ ∫
P̂j

fdαF − S(f, P̂j)

]∣∣∣∣
≤

∣∣∣∣S(f, Q̂)−
∫
Q̂
fdαF

∣∣∣∣+ m∑
j=1

∣∣∣∣S(f, P̂j)−
∫
P̂j

fdαF

∣∣∣∣
< ε+ ν.

Consequently,
∣∣∣∣S(f, P̂ )−

∫
P̂
fdαF

∣∣∣∣ ≤ ε. Similarly, we can prove second inequality.

Some more properties of ∗Fα- integrable functions are as follows:
Theorem 3.14 1. Let f : I → R be ∗Fα-integrable on I and E ⊂ I. If Ξ(x) =

∫ x
a fdαFx, x ∈ I. Then

Ξ is F -continuous on E.

2. Let f : I → R be ∗Fα-integrable on I and E ⊂ I. . If Ξ(x) =
∫ x
a fdαFx, x ∈ I. Then Ξ is BV GF,∗

on E.

Proof: For (1) : Let t ∈ E ⊂ I. Let ε > 0 be given and δε be a positive function on I so that∣∣∣∣S(f, P̂ )−
∫ b
a fdαF

∣∣∣∣ < ε. Let ν = min{δ(t), (1 + |f(t)|)−1}. Consider s ∈ I ∩ [t, t+ ν). Let P̂1 be tagged
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partition on [a, t], and Q̂ = P̂1 ∪ (t, [t, s]). Then Q̂ is sub-ordinate to [a, s]. Let s → t. By Lemma 3.13∣∣∣∣Ξ(s)− Ξ(t)

∣∣∣∣ = ∣∣∣∣Ξ(s)− S(f, Q̂) + f(t)(s− t) + S(f, P̂1)− Ξ(t)

∣∣∣∣
<

∣∣∣∣S(f, Q̂)− Ξ(s)

∣∣∣∣+ |f(t)|ν +

∣∣∣∣S(f, P̂1)− Ξ(t)

∣∣∣∣
< ε+ |f(t)|ν + ε = 3ε.

Hence Ξ is F -continuous on E as s → t.

For (2) : Let us construct a positive function δε on I so that 0 < δ(t) < 1 for all t ∈ I and
∣∣∣∣S(f, P̂ ) −∫ b

a fdαF

∣∣∣∣ < 1 whenever P̂ is sub-ordinate to δ on I. Let Fjm =

{
t ∈ I : j − 1 ≤ |f(t)| < j & 1

m+1 ≤

δ(t) ≤ 1
m

}
. Clearly I =

∞⋃
j=1

∞⋃
m=1

Fjm . Let
{
[ak, bk] : 1 ≤ k ≤ N

}
be a collection of non-overlapping

intervals having end points in Fjm . Since Ξ is F -continuous. We can select points a′k, b
′
k ∈ [ak, bk] ⊂ E with

a′k < b′k such that
∣∣Ξ(b′k)−Ξ(a′k)

∣∣ = h
(
Sα
F , [ak, bk]

)
whenever (a′k, [a

′
k, ak]), (b

′
k, [b

′
k, bk]) are sub-ordinate

to δ. Using Lemma 3.13, we have

N∑
k=1

h
(
Sα
F , [ak, bk]

)
=

N∑
k=1

|Ξ(b′k)− Ξ(a′k)|

≤
N∑
k=1

{
|Ξ(a′k)− Ξ(ak)− f(ak)(a

′
k − ak)|

+ |f(ak)(a′k − ak)|+ |Ξ(ak)− Ξ(bk) + f(ak)(bk − ak)|

+ |f(ak)(bk − ak)|+ |Ξ(bk)− Ξ(b′k)− f(bk)(bk − b′k)|+ |f(bk)(bk − b′k)|
}

=
N∑
k=1

|D(bk)− Ξ(ak)− f(ak)(bk − ak)|

+
N∑
k=1

{
|Ξ(a′k)− Ξ(ak)− f(ak)(a

′
k − ak)|+ |Ξ(bk)− Ξ(b′k)− f(bk)(bk)− b′k)|

}

+

N∑
k=1

{
|f(ak)|(a′k − ak) + |f(bk)|(bk − b′k)

}
+

N∑
k=1

|f(ak)|(bk − ak) < ∞.

Therefore Ξ is BVF,∗ on each Ejm . So, Ξ is BV GF,∗ on I through E ⊂ I.

Next, we are construct an example to show that the first fundamental theorem of calculus not hold for
∗Fα-integrable functions.
Example 3.15 Let C ⊂ [0, 1] be the tenary Contor set. Clearly C is an α-set for α = log23 . Let f : [0, 1] →
R by

f(x) =


0, if x ≤ 1

3

3x− 1, if 1
3 < x < 2

3

1, if x ≥ 2
3
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has Dα
F -derivative

(
Dα

F f
)

exists on null of C, and
(
Dα

F f
)

is ∗Fα-integrable functions but
∫
C

(
Dα

F f
)
dαFx =

0 ̸= Fα
C (1)− Fα

C (0) = 1.

The best suitable fundamental theorem for ∗Fα-integrable function can be state as follows:
Theorem 3.16 Let E ⊆ I ⊂ R be a closed α-set with a = min I, b = max I and let

{
(aj , bj)

}
j∈N be the

contiguous intervals of I. If Ξ : I → R is α-differentiable at each x ∈ I and if
∞∑
j=1

|Ξ(bj) − Ξ(aj)| < ∞

then
(
Dα

FΞ
)

is ∗Fα-integrable on I and
∫
I

(
Dα

FΞ
)
dαFx = Ξ(b)− Ξ(a)−

∞∑
j=1

(
Ξ(bj)− Ξ(aj)

)
.

Proof: Let ε > 0 be given and N ∈ N so that
∞∑

j=N

|Ξ(bj)− Ξ(aj)| < ε
2 . Let m = inf

{
|bj − aj | : j =

1, 2, ..., n − 1

}
. For simple notation let

{
(aj , bj)

}
j∈N = E and x ∈ E. By α-differentiability of Ξ at x,

there exists 0 < δ(x) < m such that∣∣∣∣Ξ(u)− Ξ(x)− (Dα
FΞ)Hα([u, x])

∣∣∣∣ ≤ εHα([u, x])

2Hα(E)
(2)

Next for each u ∈ E ∩ (x − δ(x), x + δ(x)), consider
{
[ui, vi], xi

}n

i=1

be a δε-fine partition of E. By

inequality(2), we have∣∣∣∣Ξ(vi)− Ξ(ui)− (Dα
FΞ)(xi)Hα([ui, vi])

∣∣∣∣ ≤ ∣∣∣∣Ξ(vi)− Ξ(xi)− (Dα
FΞ)(xi)Hα([xi, vi])

∣∣∣∣
+

∣∣∣∣Ξ(xi)− Ξ(ui)− (Dα
FΞ)(xi)Hα([ui, xi])

∣∣∣∣
≤ ε

(
Hα([ui, xi])

2Hα(E)
+

Hα([xi, vi])

2Hα(E)

)
≤ ε

Hα([ui, vi])

2Hα(E)
.

Therefore∣∣∣∣ n∑
i=1

(Dα
FΞ)(xi)Hα([ui, vi])−

n∑
i=1

(F(vi)−F(ui)

∣∣∣∣ ≤ ε

2Hα(E)

n∑
i=1

Hα([ui, vi]) =
ε

2
. (3)

Since ui, vi ∈ E and {(aj , bj)}j∈N is the sequence of all contiguous intervals of E then

Ξ(b)− Ξ(a) =

n∑
i=1

(Ξ(vi)− Ξ(ui)) +
∑

(aj ,bj)⊈
⋃b

i=1[ui,vi]

(
Ξ(bj)− Ξ(aj)

)
. (4)

Since [aj , bj ] ⊂ [ui, vi], this implies |bj − aj | ≤ |vi − ui| < 2δ(xi) < m. Consequently j ≥ N, hence

∑
[aj ,bj ]⊂

n⋃
i=1

[ui,vi]

∣∣∣∣Ξ(bj)− Ξ(aj)

∣∣∣∣ ≤ ∞∑
i=N

∣∣∣∣Ξ(bj)− Ξ(aj)

∣∣∣∣ ≤ ε

2
. (5)

12



Finally by Eqn( 3), (4) and (5), we have∣∣∣∣ n∑
i=1

(Dα
FΞ)Hα([ui, vi])−

(
Ξ(b)− Ξ(a)−

∞∑
j=1

(Ξ(bi)− Ξ(ai)

)∣∣∣∣
≤

∣∣∣∣ n∑
i=1

(Dα
FΞ)(xi)Hα([ui, vi])−

n∑
i=1

(Ξ(vi)− Ξ(ui))

∣∣∣∣
+

∣∣∣∣ n∑
i=1

(
Ξ(vi)− Ξ(ui)

)
−
(
Ξ(b)− Ξ(a)−

∞∑
j=1

(Ξ(bj)− Ξ(aj)
)∣∣∣∣

≤ ε

2
+

∣∣∣∣ ∑
[aj ,bj ]⊂

⋃n
i=1[ui,vi]

(
Ξ(bj)− Ξ(aj)

)∣∣∣∣ ≤ ε.

If one agreed the definition of ∗Fα integral of [7], the Fundamental Theorem ∗Fα integrable function
can be formulate as follows.
Theorem 3.17 If f : I → R is F -continuous and α-differentiable at each point of E ⊆ I and if Sch(f) ⊆
E, then

∫
E(D

α
F f)d

α
F (t) = f(b)− f(a).

Proof Since Sch(f) ⊆ E, f is a constant on each contiguous interval (ak, bk) of E. It is clear that

f(ak) = f(bk) for k ∈ N. Also F -continuity of f gives
∞∑
j=1

|f(bj)− f(aj)| < ∞. Using Theorem 3.16, we

can find complete proof.
Lemma 3.18 Let Ξ : I → R is ACGF,∗ on I and F ⊂ I. If Hα(F ) = 0 then for each ε > 0 there exists a
positive function δ on F such that |Ξ(P̂ )| < ε whenever P̂ is sub-ordinate to δ.

Proof: Let F =
∞⋃
k=1

[ak, bk] where [ak, bk]
′s are disjoint and Ξ is ACF,∗ on each [ak, bk]. Consider

|Ξ(P̂ )| < ε
2k

where P̂ is tagged partition on [ak, bk] and Hα(P̂ ) < ν where ν > 0. Let P̂k ⊂ P̂ that has tags
in [ak, bk] and Hα(P̂k) < Hα(Ok) < ν where [ak, bk] ⊆ Ok, Ok are open set with Hα(Ok) < ν. Hence

|Ξ(P̂ )| ≤
∞∑
k=1

|Ξ(P̂k)| < ε.

Theorem 3.19 A function f is ∗Fα-integrable on I if and only if there exists F -continuous function Ξ which
is ACGF,∗ on I such that Dα

FΞ(x) = f(x) a.e.

Proof: Let f : I → R be ∗Fα-integrable on I and let Ξ(x) =
∫ x
a fdαFx for each x ∈ I. Clearly Ξ is

F -continuous. Next we shall prove Dα
FΞ(x) = f(x) a.e. on I. Let A =

{
x ∈ [a, b) : Dα

FΞ(x) ̸= f(x)
}
.

For each x ∈ A, there exists νx > 0 and for each h > 0 there exists a point vxh ∈ I ∩ (x, x + h) such that
|Ξ(vxh) − Ξ(x) − f(x)(vxh − x)| ≥ νx(v

x
h − x). For each positive integer n, let An = {x ∈ A : nx ≥ 1

n}.
Next, we prove Hα(An) = 0 for each n. For fix n, let ε > 0. Since Ξ is ∗Fα-integrable of f , there exists
a positive function δ on I such that |S(f, P̂ ) − Ξ(P̂ )| < ε whenever P̂ is δε fine tagged partition of I. Let

J =

{
[x, vxh] : x ∈ An; 0 < h < δ(n)

}
. Clearly J form a closed Vitali cover of An. By [2, Theorem

1.10], there exists a countable disjoint sequence of Borel sets {Uk} from J such that Hα(J ) ≤
∑
k

|Uk|α+ ε
2 .

By Lemma 3.13,
∑
k

|Uk|α < ε
2 . Hence Hα(J ) < ε. Since ε is an arbitrary, we can see Hα(J ) = 0. Hence

Dα
FΞ(x) = f(x) a.e..
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Next let for each positive integer n, Jk =

{
x ∈ I : n − 1 ≤ |f(x)| < k

}
. Let us make k is fixed.

Consider ε > 0. Since f is ∗Fα integrable on I, by definition |S(f, P̂ )−
∫ b
a fdαF | ≤ ε whenever P̂ is tagged

partition on I. If P̂ is δε sub-ordinate to Jk and Hα(P̂ ) < ε
2k . By Lemma 3.13,

|Ξ(P̂ )| ≤ |Ξ(P̂ )− S(f, P̂ )|+ |S(f, P̂ )|

<
ε

2
+ kHα(P̂ ) < ε.

So, Ξ is ACF,∗ on Jk. Since I =
∞⋃
k=1

Jk, clearly D is ACGF,∗ on I.

Conversely, suppose there exists an ACGF,∗ function Ξ on I through F such that Dα
FΞ = f a.e. on

I. Let E = {x ∈ I : Dα
FΞ(x) ̸= f(x)} and let ε > 0. For each x ∈ I \ E, choose δ(x) > 0 so that

|Ξ(y)−Ξ(x)− f(x)(y−x)| < ε|y−x| whenever |y−x| < δ(x) and y ∈ I. By Lemma 3.18, for δ(x) > 0

on E so that |S(f, P̂ )| < ε
2 and |Ξ(P̂ )| < ε

2 whenever P̂ is sub-ordinate to δ on E. Let P̂E ⊂ P̂ tagges in
E. If P̂d = P̂ \ P̂E , then we have

|S(f, P̂ )− Ξ(P̂ )| ≤ |S(f, P̂d)− Ξ(P̂d)|+ |S(f, P̂E)|+ |Ξ(P̂E)|

< ε.

So, f is ∗Fα integrable on I and
∫ b
a fdαF = Ξ(b)− Ξ(a).

Next theorem gives a relationship of Fα and ∗F ∗ integrable functions.
Theorem 3.20 If f is positive, ∗Fα integrable on I ∩ F and F -derivative of its primitive is bounded then f

is Fα integrable therein.

Proof: Let f is nonnegative on I ∩ F, then Ξ(x) =
∫ x
a fdαFx is nondecreasing on I ∩ F. Since Ξ(x)

is nondecreasing and Dα
FΞ(x) is bounded, then Dα

FΞ(x) is Fα-integrable on I ∩ F. From Theorem 3.19,
Dα

FΞ(x) = f a.e. on I ∩ F. Hence f is Fα-integrable on I ∩ F.

Next we discuss controlled type convergence theorem for ∗Fα-integrals. In order to prove controlled
type convergence theorem, we introduce equi-F -continuous ∗Fα integral as follows.
Definition 3.21 Let fn : I → R, n = 1, 2, ... be given ∗Fα-integrable functions with integral

∫ b
a fn(s)d

α
F s

for every n = 1, 2, .... The sequence (fn) of ∗Fα-integrable function is called equi-F -continuous if for every
ε > 0 there is a gauge δ on I such that

∣∣S(fn, P̂ )−
∫ b
a fn(s)d

α
F s

∣∣ < ε whenever P̂ is tagged partition on I.

The following theorem is a convergence theorem for ∗Fα integral.
Theorem 3.22 If a sequence of ∗Fα integrable functions {fk} satisfied the followings:

1. fk(x) → f(x) a.e. in I as k → ∞;

2. The primitives Ξk(x) =
∫ x
a fk(s)d

α
F s of fk are ACGF,∗ uniformly in k;

3. The primitives Ξk are equi-F -continuous on I;

then f is ∗Fα-integrable on I and
∫ b
a fk →

∫ b
a f as n → ∞.
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Proof: Let fk(x) → f(x) everywhere as k → ∞. Since each fk is ∗F ∗-integrable on I, given ε > 0

there is δk(ε) > 0 such that for any tagged partition P̂ sub-ordinate to δn(ξ), we have |S(fk, P̂ )−
∫ b
a fkd

α
F | <

ε. Now we define δ(ξ) = δm(ε) so that |fm − f | < ε. Clearly m = m(ξ, ε) is a function of ξ and ε. Let
us denote Ξn([ak, bk]) denote the integral of fn on [ak, bk] and Ξ([ak, bk]) be the F -limit of Ξn([ak, bk]) as
n → ∞. Let P̂k be a tagged partition on [ak, bk] sub-ordinate to δk, consequently sub-ordinate to δ. Then

∣∣S(f, P̂ )−
∫ b

a
fdαF

∣∣ ≤ ∣∣S(f, P̂k)− S(fk, P̂k

∣∣
+
∣∣S(fk, P̂k)−

∑
Ξk([ak, bk])

∣∣+ ∣∣∑Ξk([ak, bk])−
∫ b

a
fdαF

∣∣
<

ε

3
+

ε

3
+

ε

3
= ε.

4 Existence of solution of the equation Dα
F

(
∗ Sα

F (x)
)
= f(t, ∗Sα

F (x))

In this Section, let τ and ξ be fixed and let f(t, ∗Sα
F (x)) be a Carathéodory function defined on a rectangle

R : |t − τ | ≤ a, | ∗ Sα
F (x) − ξ| ≤ b i.e. f is F -continuous in ∗Sα

F (x) for almost all t and measurable in t

for each fixed ∗Sα
F (x).

Theorem 4.1 Let f be a function as our assumption. Consider g(t) and h(t) are ∗Fα-integrable functions
on |t− r| ≤ a such that g(t) ≤ f(t, ∗Sα

F (x)) ≤ h(t) ∀ ∗ Sα
F (x) and almost all t with (t, ∗Sα

F (x)) ∈ R then
there exists a solution of Dα

F

(
∗Sα

F (x)
)
= f(t, ∗Sα

F (x)) on some interval |t− r| ≤ β, β > 0 with ϕ(τ) = ξ.

Proof: Given g(t) ≤ f(t, Sα
F (x)) ≤ h(t) for all ∗Sα

F (x) and almost all t with (t, ∗Sα
F (x)) ∈ R. Clearly

0 ≤ f(t, ∗Sα
F (x)) − g(t) ≤ h(t) − g(t). By Theorem 3.20, h − g is Fα-integrable. Let Ξ(t, ∗Sα

F (x)) =

f
(
t, ∗Sα

F (x) +
∫ t
τ g(s)d

α
F s

)
− g(t). Since f(t, ∗Sα

F (x)) is a Carathéodory function, so Ξ(t, Sα
F (x)) is also

Carathéodory function. Moreover, 0 ≤ Ξ(t, ∗Sα
F (x)) ≤ h(t) − g(t) for all (t, ∗Sα

F (x)) ∈ R′ where R′ is
sub-rectangle of R with

∣∣∗Sα
F (x)+

∫ t
τ g(s)d

α
F s−ξ

∣∣ ≤ b for all (t, ∗Sα
F (x)) ∈ R′. By Carathéodory existence

theorem for fractal there is a function Φ on some |t−r| ≤ β ⊂ F ∩I such that Dα
FΦ(t) = Ξ(t,Φ(t)) almost

everywhere in |t− r| ≤ β and Φ(τ) = ξ. Let ϕ(t) = Φ(t) +
∫ t
τ g(s)d

α
F s. Then for almost all t,

Dα
Fϕ(t) = Dα

FΦ(t) + g(t)

= Ξ(t,Φ(t)) + g(t)

= f

(
t,Φ(t) +

∫ t

τ
g(s)dαF s

)
− g(t) + g(t)

= f(t, ϕ(t)).

So, ϕ(τ) = Φ(τ) +
∫ τ
r g(s)dαF s = ξ.

We present an example to validation of Theorem 4.1.
Example 4.2 Let Dα

F

(
∗ Sα

F (x)
)
= f(t, ∗Sα

F (x)) = §(t, ∗Sα
F (x)) + h(t) where |§(t, ∗Sα

F (x))| ≤ §1(t) for
all |t| ≤ 1, |x| ≤ 1 and §1(t) is Fα-integrable on |t| ≤ 1 and let

h(t) =

 Dα
F (

t2

sint2
), if t ̸= 0

0, if t = 0.
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Here τ = ξ = 0. Clearly h is ∗Fα-integrable but not Fα- integrable. By Theorem 4.1, there exists a
solution of Dα

F

(
∗ Sα

F (x)
)
= f(t, ∗Sα

F (x)) with x(0) = 0. Moreover if §(t, ∗Sα
F (x)) = t2 ∗ Sα

F (x), then

ϕ(t) = e
t3

3

∫ t
0 e

− s3

3 h(s)dαF s is a solution of ∗Fα-integrable function which is not a Fα-integrable.

Finally, we prove the extension of Theorem 4.1 with the help of Theoem 3.22.
Theorem 4.3 Let f(t, ∗Sα

F (x)) be a Carathéodory function defined on a rectangle R : |t − τ | ≤ a; | ∗
Sα
F (x) − ξ| ≤ b. Let f(t, Sα

F (x)) be defined on |t − τ | ≤ a for any step functions u(t), v(t) defined by
|t − τ | ≤ a with values in | ∗ Sα

F (x) − ξ| ≤ b so that f(t, u(t)) ≤ f(t, ∗Sα
F (x)) ≤ f(t, v(t)). Let Zu(t) =∫ t

τ f(s, u(s))d
α
F s where

{
Zu : u is step function

}
is ACGF,∗ uniformly in u and equi-F -continuous on

|t− τ | ≤ a, then there exists a solution of Dα
F

(
∗ Sα

F (x)
)
= f(t, ∗Sα

F (x)) on some interval |t− τ | ≤ β.

Proof: Let {Fk(t)} be a sequence of step function defined on |t−τ | ≤ a with values in |∗Sα
F (x)−ξ| ≤

b such that Fk(t) → u(t) as k → ∞. Then f(t,Fk(t)) → f(t, u(t)) a.e. as k → ∞. Let Zu(t) =∫ t
τ f(s,Fk(s))d

α
F s. Then {Zu(t)} is ACGF,∗ is uniformly in u and equi-F -continuous. By Theorem 3.22,

f(t, u(t)) is ∗Fα integrable. Similar way we can see f(t, v(t)) is ∗Fα-integrable. Clearly f(t, ∗Sα
F (x)) is

∗Fα integrable. By Theorem 4.1, Dα
F

(
∗Sα

F (x)
)
= f(t, ∗Sα

F (x)) has a solution in some interval |t−τ | ≤ β.

5 Conclusion

We introduced Fα-type integrals with gauge functions called ∗Fα-integral without assuming Sch(f) con-
tained in a fractal set F ⊂ I. Several properties of ∗Fα integrable functions are discussed. We have shown
fundamental theorem of calculus for ∗Fα integrable functions when Sch(f) not necessarily in F is slightly
different from the fundamental theorem of calculus for ∗Fα integrable functions when Sch(f) ⊂ F. In
the last Section, we have shown existence of solutions of fractal differential equation Dα

F

(
∗ Sα

F (x)
)
=

f(t, ∗Sα
F (x)) in the sense of ∗Fα integrable functions. An example has been provided to show that there

are ∗Fα integrable solutions of the fractal differential equation Dα
F

(
Sα
F (x)) = f(t, ∗Sα

F (x)) that are not
necessarily Fα integrable.

One can use the generalized measure of [5] to construct Lebesgue-type F ∗ integrals, as well as ∗Fα-
type integrals to find the existence of solutions of several retarded fractal differential equations and their
numerical techniques. In coming days, we shall compute numerical integration of F ∗-integral and class of
∗Fα
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integral to find their practical applications in various physical models.
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