THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

External Links

online first only

Heat transfer enhancement of staggered water-droplet grooved microchannel heat sink using Al2O3 nanofluid

ABSTRACT
The performance reliability and durability of modern cutting-edge technology are highly dependent on the ability of the devices to dissipate enormous amounts of heat to the ambient environment. A synergetic combination of two passive heat transfer enhancement techniques would be favourable to prevent overheating. The concurrent implementation of Al2O3 nanofluid and staggered water-droplet groove geometries in microchannel heat sink application was investigated using numerical approach. Numerical results reported in this study revealed that the heat dissipation capability of the microchannel heat sink can be improved when Al2O3 nanofluid is used in conjunction with the water-droplet grooves arranged in staggered manner. The predictive accuracy of the numerical method has been validated with published results available.
KEYWORDS
PAPER SUBMITTED: 2023-07-06
PAPER REVISED: 2023-11-04
PAPER ACCEPTED: 2023-11-05
PUBLISHED ONLINE: 2024-02-18
DOI REFERENCE: https://doi.org/10.2298/TSCI230706009S
REFERENCES
  1. Tuckerman, D.B. and R.F.W. Pease, High-performance heat sinking for VLSI. IEEE Electron Device Letters, 1981. 2(5): p. 126-129.
  2. Abdelmohimen, M.A.H., et al., Numerical investigation of using different arrangement of fin slides on the plate-fin heat sink performance. Thermal Science, 2021. 25(6): p. 4683-4693.
  3. Choong, J.Y., K.H. Yu, and M.Z. Abdullah, Numerical assessment on heat transfer performance of double-layered oblique fins micro-channel heat sink with al2o3 nanofluid Thermal Science, 2022. 26(1): p. 477-488.
  4. Cong, B., et al., Investigation on the heat dissipation of high heat flux chip array by fractal micro-channel networks. Thermal Science, 2023. 27(1): p. 869-880.
  5. Jung, S.Y. and H. Park, Experimental investigation of heat transfer of Al2O3 nanofluid in a microchannel heat sink. International Journal of Heat and Mass Transfer, 2021. 179: p. 121729.
  6. Yang, L., et al., Numerical assessment of Ag-water nano-fluid flow in two new microchannel heatsinks: Thermal performance and thermodynamic considerations. International Communications in Heat and Mass Transfer, 2020. 110: p. 104415.
  7. Chein, R. and G. Huang, Analysis of microchannel heat sink performance using nanofluids. Applied Thermal Engineering, 2005. 25(17): p. 3104-3114.
  8. Tsai, T.-H. and R. Chein, Performance analysis of nanofluid-cooled microchannel heat sinks. International Journal of Heat and Fluid Flow, 2007. 28(5): p. 1013-1026.
  9. Chein, R. and J. Chuang, Experimental microchannel heat sink performance studies using nanofluids. International Journal of Thermal Sciences, 2007. 46(1): p. 57-66.
  10. Maxwell, J.C., A treatise on electricity and magnetism. A Treatise on Electricity and Magnetism. Vol. 9781108014038. 2010. 1-442.
  11. Jang, S.P. and S.U.S. Choi, Cooling performance of a microchannel heat sink with nanofluids. Applied Thermal Engineering, 2006. 26(17): p. 2457-2463.
  12. Ho, C.J., L.C. Wei, and Z.W. Li, An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Applied Thermal Engineering, 2010. 30(2): p. 96-103.
  13. Farsad, E., et al., Numerical simulation of heat transfer in a micro channel heat sinks using nanofluids. Heat and Mass Transfer, 2011. 47(4): p. 479-490.
  14. Hung, T.-C., et al., Heat transfer enhancement in microchannel heat sinks using nanofluids. International Journal of Heat and Mass Transfer, 2012. 55(9): p. 2559-2570.
  15. Ebrahimi, S., et al., Cooling performance of a microchannel heat sink with nanofluids containing cylindrical nanoparticles (carbon nanotubes). Heat and Mass Transfer, 2010. 46(5): p. 549-553.
  16. Colangelo, G., M. Milanese, and A. De Risi, Numerical simulation of thermal efficiency of an innovative Al2O3 nanofluid solar thermal collector influence of nanoparticles concentration. Thermal Science, 2017. 21(6): p. 2769-2779.
  17. Mohammed, H.A., P. Gunnasegaran, and N.H. Shuaib, The impact of various nanofluid types on triangular microchannels heat sink cooling performance. International Communications in Heat and Mass Transfer, 2011. 38(6): p. 767-773.
  18. Khanafer, K. and K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 2011. 54(19): p. 4410-4428.
  19. Pak, B.C. and Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 1998. 11(2): p. 151-170.
  20. Hamilton, R.L. and O.K. Crosser, Thermal Conductivity of Heterogeneous Two-Component Systems. Industrial & Engineering Chemistry Fundamentals, 1962. 1(3): p. 187-191.
  21. Wasp, E.J., R.L. Gandhi, and J.P. Kenny, Solid-liquid flow: slurry pipeline transportation. CLAUSTHAL, GERMAN FED. REPBL., TRANS TECH. PUBLICATIONS, 1977, 1975. 1 , 4.
  22. Einstein, A., Eine neue Bestimmung der Moleküldimensionen. Annalen der Physik, 1906. 324(2): p. 289-306.
  23. Lee, Y.J., P.S. Lee, and S.K. Chou, Enhanced thermal transport in microchannel using oblique fins. Journal of Heat Transfer, 2012. 134(10): p. 101901.