THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

Analysing the effects of toluene percentages and EGR rates on spark-ignition engine performance and emissions

ABSTRACT
This study delves into the intricate dynamics of gaseous emissions in relation to varying parameters in spark-ignition engines: gasoline-toluene blending ratios, EGR rates, and spark timings. With increasing toluene concentrations, there was a consistent reduction in emissions, culminating in HC values of 67 ppm, CO at 0.6% volume, PM at 11 mg/m³, and NOx at 100 ppm for a 100% toluene blend. The implementation of EGR demonstrated its efficacy in mitigating NOx emissions, registering a decline to 60 ppm at a 30% EGR rate. However, the same augmentation in EGR rates witnessed an uptick in HC and CO emissions. Analysis of spark timings pinpointed an optimal advance of 30° CA bTDC at a 50% engine load, yielding minimized emissions. Conclusively, the research underscores the potential of fine-tuning engine parameters, such as fuel composition, EGR rates, and spark advance, to achieve a harmonious balance between engine efficiency and emission reductions. This study lays foundational data for further exploration and optimization in the realm of internal combustion engines.
KEYWORDS
PAPER SUBMITTED: 2022-10-21
PAPER REVISED: 2023-09-15
PAPER ACCEPTED: 2023-11-01
PUBLISHED ONLINE: 2024-01-20
DOI REFERENCE: https://doi.org/10.2298/TSCI221021270R
REFERENCES
  1. Duan, X., Lai, M. C., Jansons, M., Guo, G., & Liu, J.. "A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine". Fuel, 285, 2021. doi.org/10.1016/j.fuel.2020.119142
  2. Teoh, Y. H., How, H. G., Le, T. D., Nguyen, H. T., Loo, D. L., Rashid, T., & Sher, F.. "A review on production and implementation of hydrogen as a green fuel in internal combustionengine". Fuel, 333 (P2), 2023. doi.org/10.1016/j.fuel.2022.126525
  3. Liu, J., Wang, L., Wang, P., Sun, P., Liu, H., Meng, Z., Zhang, L., & Ma, H." An overview of polyoxymethylene dimethyl ethers as alternative fuel for compression ignition engines". Fuel, 318,2022. 123582. doi.org/10.1016/j.fuel.2022.123582
  4. Zhao, H., Stone, R., & Zhou, L. "Analysis of the particulate emissions and combustion performance of a direct injection spark ignition engine using hydrogen and gasoline mixtures". International Journal of Hydrogen Energy, 35(10), 2010, pp. 4676-4686. doi.org/10.1016/j.ijhydene.2010.02.087
  5. Nguyen, X. P., Hoang, A. T., Ölçer, A. I., Engel, D., Pham, V. V., & Nayak, S. K. "Biomass-derived 2,5-dimethylfuran as a promising alternative fuel: An application review on the compression and spark ignition engine". Fuel Processing Technology, 214, 2021. doi.org/10.1016/j.fuproc.2020.106687.
  6. Zhang, P., Xu, G., Li, Y., Cai, Y., Duan, H., & Jia, M. "Collaborative optimization of fuel composition and operating parameters of gasoline compression ignition (GCI) engine in a wide load range". Fuel, 310(PA), 2021. doi.org/10.1016/j.fuel.2021.122366
  7. Tuan Hoang, A., Nižetić, S., Viet Pham, V., Tuan Le, A., Ga Bui, V., & Vang Le, V. "Combustion and emission characteristics of spark and compression ignition engine fueled with 2,5-dimethylfuran (DMF): A comprehensive review". Fuel, 288, 2021. doi.org/10.1016/j.fuel.2020.119757
  8. Bobi, S., Kashif, M., & Laoonual, Y. "Combustion and emission control strategies for partially-premixed charge compression ignition engines: A review". Fuel, 310 (PA), 2022. doi.org/10.1016/j.fuel.2021.122272
  9. Ortiz-Imedio, R., Ortiz, A., Urroz, J. C., Diéguez, P. M., Gorri, D., Gandía, L. M., & Ortiz, I. "Comparative performance of coke oven gas, hydrogen and methane in a spark ignition engine". International Journal of Hydrogen Energy, 46(33), 2021, pp. 17572-17586. doi.org/10.1016/j.ijhydene.2019.12.165
  10. D'Adamo, A., Breda, S., Berni, F., & Fontanesi, S. " The potential of statistical RANS to predict knock tendency: Comparison with LES and experiments on a spark-ignition engine". Applied Energy, 249(April), 2019, pp. 126-142. doi.org/10.1016/j.apenergy.2019.04.093
  11. Szybist, J. P., Busch, S., McCormick, R. L., Pihl, J. A., Splitter, D. A., Ratcliff, M. A., Kolodziej, C. P., Storey, J. M. E., Moses-DeBusk, M., Vuilleumier, D., Sjöberg, M., Sluder, C. S., Rockstroh, T., & Miles, P. " What fuel properties enable higher thermal efficiency in spark-ignited engines?" Progress in Energy and Combustion Science, 82, 2021. doi.org/10.1016/j.pecs.2020.100876
  12. Gonca, G., & Hocaoglu, M. F." Emission and in-cylinder combustion characteristics of a spark ignition engine operated on binary mixtures of gas and liquid fuels". International Journal of Hydrogen Energy, 2023. doi.org/10.1016/j.ijhydene.2023.08.164
  13. Wang, C., Zeraati-Rezaei, S., Xiang, L., & Xu, H." Ethanol blends in spark ignition engines: RON, octane-added value, cooling effect, compression ratio, and potential engine efficiency gain". Applied Energy, 191, 2017, pp. 603-619. doi.org/10.1016/j.apenergy.2017.01.081
  14. Bozza, F., De Bellis, V., & Teodosio, L." Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines". Applied Energy, 169, 2016 pp. 112-125. doi.org/10.1016/j.apenergy.2016.01.129
  15. Hernandez, J. J., Sanz-Argent, J., Benajes, J., & Molina, S. "Selection of a diesel fuel surrogate for the prediction of auto-ignition under HCCI engine conditions". Fuel, 87(6), 2016, pp. 655-665. doi.org/10.1016/j.fuel.2007.05.019
  16. Feng, H., Wang, X., & Zhang, J. "Study on the effects of intake conditions on the exergy destruction of low temperature combustion engine for a toluene reference fuel". Energy Conversion and Management, 188(March), 2019, pp. 241-249. doi.org/10.1016/j.enconman.2019.02.090
  17. D.F. Chuahy, F., Moses-DeBusk, M., Curran, S. J., Storey, J. M. E., & Wagnon, S. W."The effects of distillation characteristics and aromatic content on low-load gasoline compression ignition (GCI) performance and soot emissions in a multi-cylinder engine". Fuel, 299, 2021. doi.org/10.1016/j.fuel.2021.120893
  18. Machrafi, H. "Experimental validation of a kinetic multi-component mechanism in a wide HCCI engine operating range for mixtures of n-heptane, iso-octane and toluene: Influence of EGR parameters". Energy Conversion and Management, 49(11), 2018, pp. 2956-2965. doi.org/10.1016/j.enconman.2008.06.016
  19. Laganá, A. A. M., Lima, L. L., Justo, J. F., Arruda, B. A., & Santos, M. M. D. "Identification of combustion and detonation in spark ignition engines using ion current signal". Fuel, 227, 2018, pp. 469-477. doi.org/10.1016/j.fuel.2018.04.080
  20. Teodosio, L., Bozza, F., Tufano, D., Giannattasio, P., Distaso, E., & Amirante, R. "Impact of the laminar flame speed correlation on the results of a quasi-dimensional combustion model for Spark-Ignition engine". Energy Procedia, 148, 2018, pp.s 631-638. doi.org/10.1016/j.egypro.2018.08.151
  21. Gonca, G., Sahin, B., & Hocaoglu, M. F. "Influences of hydrogen and various gas fuel addition to different liquid fuels on the performance characteristics of a spark ignition engine". International Journal of Hydrogen Energy, 47(24), 2022. pp.12421-12431. doi.org/10.1016/j.ijhydene.2021.09.029
  22. DelVescovo, D. A., Splitter, D. A., Szybist, J. P., & Jatana, G. S. "Modeling pre-spark heat release and low temperature chemistry of iso-octane in a boosted spark-ignition engine". Combustion and Flame, 212, 2020. pp. 39-52. doi.org/10.1016/j.combustflame.2019.10.009.
  23. Paranthaman Saravanan, Dharmalingam Mala, Arockiaraj Godwin Antony and Venkatraman Vijayan, "An experimental investigation on a low heat rejection diesel engine using waste plastic oil with different injection timing", Thermal Science. 24, 2020. pp. 453-461. doi.org/10.2298/TSCI190414359P.
  24. Krishnaswamy Haribabu, Muthukrishnan Sivaprakash, Thanikodi Sathish AU, Arockiaraj Godwin Antony and Venkatraman Vijayan, "Investigation of air conditioning temperature variation by modifying the structure of passenger car using computational fluid dynamics", Thermal Science. 24, 2020. pp. 495-498. doi.org/10.2298/TSCI190409397K.
  25. Sathish Thanikodi, Dinesh Kumar Singaravelu, Chandramohan Devarajan, Vijayan Venkatraman, Venkatesh Rathinavelu, "Teaching Learning Optimization And Neural Network For The Effective Prediction Of Heat Transfer Rates In Tube Heat Exchangers", Thermal Science. 24, 2020. pp. 575-581. doi.org/10.2298/TSCI190714438T.
  26. Sakthivel Perumal, Srinivasan Rajendrian, Vijayan Venkatraman, Dinesh Sundaresan, Lakshmanan Pandiyan, "Experimental Study About Thermal Resistance Of Windows With Air Gap Between Two Glasses Used In Single Houses" Thermal Science. 24, 2020. pp. 515-518. doi.org/10.2298/TSCI190411031P