THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

External Links

online first only

Natural nanofluid convection in rectangular porous domains

ABSTRACT
In this paper, the free convective flow and heat transfer in a porous rectangular enclosures filled with Cu-water nanofluid is studied and analyzed. The cavity sidewalls are exposed to a constant heat flux and the horizontal walls are assumed to be adiabatic. The governing equations describing the problem are solved using a finite difference method. The main parameters of our problem are: aspect ratio, volume fraction of nanoparticles, types of media, porosity of the medium and Rayleigh number. The results indicate that an increase in aspect ratio from 0.1 to 0.7 leads to a significant increase of Nusselt number, which then reaches a maximum value. However, the heat transfer rate progressively decreases for aspect ratios greater than 0.7. Moreover, the addition of Cu-nanoparticles weakens the heat transfer. As a result, when the porous medium has low thermal conductivity, the solid matrix porosity becomes particularly more effective in improving heat transfer. Also, a correlation was established between the average Nusselt number and the influencing parameters. Results show that the governing parameters impact the flow regime.
KEYWORDS
PAPER SUBMITTED: 2023-04-05
PAPER REVISED: 2023-07-12
PAPER ACCEPTED: 2023-07-17
PUBLISHED ONLINE: 2023-09-02
DOI REFERENCE: https://doi.org/10.2298/TSCI230405178S
REFERENCES
  1. Donald A. Nield and Adrian Bejan. Convection in Porous Media. Springer International Publishing,Cham, 2017. doi: 10.1007/978-3-319-49562-0
  2. Kambiz Vafai. Handbook of Porous Media. CRC Press, 2005.
  3. Ali J. Chamkha and Hameed Al-Naser. Double-diffusive convection in an inclined porous enclosure with opposing temperature and concentration gradients. International Journal of Thermal Sciences, 40 (3):227-244, March 2001. ISSN 1290-0729. doi: 10.1016/S1290-0729(00)01213-8. URL www.sciencedirect.com/science/article/pii/S1290072900012138
  4. Ali J. Chamkha and Hameed Al-Naser. Hydromagnetic double-diffusive convection in a rectangular enclosure with uniform side heat and mass fluxes and opposing temperature and concentration gradients. International Journal of Thermal Sciences, 41(10):936-948, October 2002. ISSN 1290-0729. doi: 10.1016/S1290-0729(02)01386-8. URL www.sciencedirect.com/science/article/pii/S1290072902013868
  5. Ali J. Chamkha, Salam Hadi Hussain, and Qusay Rashid Abd-Amer. Mixed Convection Heat Transfer of Air inside a Square Vented Cavity with a Heated Horizontal Square Cylinder. Numerical Heat Transfer, Part A: Applications, 59(1):58-79, January 2011. ISSN 1040-7782. doi: 10.1080/10407782.2011. 541216. URL doi.org/10.1080/10407782.2011.541216. Publisher: Taylor & Francis _eprint: doi.org/10.1080/10407782.2011.541216
  6. Khalil M. Khanafer and Ali J. Chamkha. Hydromagnetic Natural Convection from an Inclined Porous Square Enclosure with Heat Generation. Numerical Heat Transfer, Part A: Applications, 33(8):891-910, June 1998. ISSN 1040-7782. doi: 10.1080/10407789808913972. URL doi.org/10.1080/10407789808913972. Publisher: Taylor & Francis _eprint: doi.org/10.1080/10407789808913972
  7. Sung Yong Jung and Hanwook Park. Experimental investigation of heat transfer of Al2O3 nanofluid in a microchannel heat sink. International Journal of Heat and Mass Transfer, 179:121729, November 2021. ISSN 0017-9310. doi: 10.1016/j.ijheatmasstransfer.2021.121729. URL www.sciencedirect.com/science/article/pii/S0017931021008358
  8. Mohsen Sharifpur, A. Brusly Solomon, Tanja Linda Ottermann, and Josua P. Meyer. Optimum concentration of nanofluids for heat transfer enhancement under cavity flow natural convection with TiO2 - Water. International Communications in Heat and Mass Transfer, 98:297-303, November 2018. ISSN 0735-1933. doi: 10.1016/j.icheatmasstransfer.2018.09.010. URL www.sciencedirect.com/science/article/pii/S073519331830229X
  9. Muhammad Anwar, Hussain Ahmed Tariq, Ahmad Adnan Shoukat, Hafiz Muhammad Ali, and Hassan Ali. Numerical study for heat transfer enhancement using CuO water nanofluids through mini-channel heat sinks for microprocessor cooling. Thermal Science, 24(5 Part A):2965-2976, 2020. URL www.doiserbia.nb.rs/Article.aspx?id=0354-98361900022A
  10. Pawel Keblinski, Jeffrey A. Eastman, and David G. Cahill. Nanofluids for thermal transport. Materials Today, 8(6):36-44, June 2005. ISSN 1369-7021. doi: 10.1016/S1369-7021(05)70936-6. URL www.sciencedirect.com/science/article/pii/S1369702105709366
  11. Muhammad Solleh Asmadi, Zailan Siri, Ruhaila Md Kasmani, and Habibis Saleh. Nanoparticle shape effect on the natural-convection heat transfer of hybrid nanofluid inside a U-shaped enclosure. Thermal Science, 26(1 Part B):463-475, 2022. URL www.doiserbia.nb.rs/Article.aspx?id=0354-98362100139A
  12. Alireza Rahimi, Ali Dehghan Saee, Abbas Kasaeipoor, and Emad Hasani Malekshah. A comprehensive review on natural convection flow and heat transfer: The most practical geometries for engineering applications. International Journal of Numerical Methods for Heat & Fluid Flow, 29(3):834-877, January 20180. ISSN 0961-5539. doi: 10.1108/HFF-06-2018-0272. URL doi.org/10.1108/HFF-06-2018-0272. Publisher: Emerald Publishing Limited
  13. Mohamad Sadegh Sadeghi, Naghmeh Anadalibkhah, Ramin Ghasemiasl, Taher Armaghani, Abdul Sattar Dogonchi, Ali J. Chamkha, Hafiz Ali, and Amin Asadi. On the natural convection of nanofluids in diverse shapes of enclosures: an exhaustive review. Journal of Thermal Analysis and Calorimetry, 147(1):1-22, January 2022. ISSN 1588-2926. doi: 10.1007/s10973-020-10222-y. URL doi.org/10.1007/s10973-020-10222-y
  14. Sina Izadi, Taher Armaghani, Ramin Ghasemiasl, Ali J. Chamkha, and Maysam Molana. A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technology, 343:880-907, February 2019. ISSN 0032-5910. doi: 10.1016/j.powtec.2018.11.006. URL www.sciencedirect.com/science/article/pii/S0032591018309100
  15. M. Hashemi-Tilehnoee, A. S. Dogonchi, Seyyed Masoud Seyyedi, Ali J. Chamkha, and D. D. Ganji. Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous cavity with wavy heater block. Journal of Thermal Analysis and Calorimetry, 141(5):2033-2045, September 2020. ISSN 1588-2926. doi: 10.1007/s10973-019-09220-6. URL doi.org/10.1007/s10973-019-09220-6
  16. Lan Xu, Aboozar Khalifeh, Amith Khandakar, and Behzad Vaferi. Numerical investigating the effect of Al2O3-water nanofluids on the thermal efficiency of flat plate solar collectors. Energy Reports, 8:6530-6542, November 2022. ISSN 2352-4847. doi: 10.1016/j.egyr.2022.05.012. URL www.sciencedirect.com/science/article/pii/S2352484722008599
  17. A. M. Alklaibi, L. Syam Sundar, and Kotturu V. V. Chandra Mouli. Experimental investigation on the performance of hybrid Fe3O4 coated MWCNT/Water nanofluid as a coolant of a Plate heat exchanger. International Journal of Thermal Sciences, 171:107249, January 2022. ISSN 1290-0729. doi: 10.1016/j.ijthermalsci.2021.107249. URL www.sciencedirect.com/science/article/pii/S1290072921004105
  18. Shouguang Yao, Tao Huang, Jianbang Zeng, Luobin Duan, and Kai Zhao. The study of natural convection heat transfer of nanofluids in a partially porous cavity based on Lattice Boltzmann Method. Thermal Science, 23(2 Part B):1003-1015, 2019. URL www.doiserbia.nb.rs/Article.aspx?ID=0354-98361700169S
  19. A. S. Dogonchi, Ali J. Chamkha, and D. D. Ganji. A numerical investigation of magneto-hydrodynamic natural convection of Cu-water nanofluid in a wavy cavity using CVFEM. Journal of Thermal Analysis and Calorimetry, 135(4):2599-2611, February 2019. ISSN 1588-2926. doi: 10.1007/s10973-018-7339-z. URL doi.org/10.1007/s10973-018-7339-z
  20. Ali J. Chamkha, A. S. Dogonchi, and D. D. Ganji. Magnetohydrodynamic Nanofluid Natural Convection in a Cavity under Thermal Radiation and Shape Factor of Nanoparticles Impacts: A Numerical Study Using CVFEM. Applied Sciences, 8(12):2396, December 2018. ISSN 2076-3417. doi: 10.3390/app8122396. URL www.mdpi.com/2076-3417/8/12/2396. Number: 12 Publisher: Multidisciplinary Digital Publishing Institute
  21. Ammar I. Alsabery, Muneer A. Ismael, Ali J. Chamkha, and Ishak Hashim. Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno's two-phase model. International Journal of Heat and Mass Transfer, 119:939-961, April 2018. ISSN 0017-9310. doi: 10.1016/j.ijheatmasstransfer.2017.11.136. URL www.sciencedirect.com/science/article/pii/S0017931017340036
  22. Jabrane Belabid, Soufiane Belhouideg, Karam Allali, Omid Mahian, and Eiyad Abu-Nada. Numerical simulation for impact of copper/water nanofluid on thermo-convective instabilities in a horizontal porous annulus. Journal of Thermal Analysis and Calorimetry, 138(2):1515-1525, October 2019. ISSN 1588-2926. doi: 10.1007/s10973-019-08265-x. URL doi.org/10.1007/s10973-019-08265-x
  23. Hakan F. Oztop and Eiyad Abu-Nada. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29(5): 1326-1336, October 2008. ISSN 0142-727X. doi: 10.1016/j.ijheatfluidflow.2008.04.009. URL www.sciencedirect.com/science/article/pii/S0142727X08000933
  24. Fares Redouane, Wasim Jamshed, S. Suriya Uma Devi, M. Prakash, Nor Ain Azeany Mohd Nasir, Zakia Hammouch, Mohamed R. Eid, Kottakkaran Sooppy Nisar, A. Belhadj Mahammed, Abdel-Haleem Abdel-Aty, I. S. Yahia, and Emad M. Eed. Heat flow saturate of Ag/MgO-water hybrid nanofluid in heated trigonal enclosure with rotate cylindrical cavity by using Galerkin finite element. Scientific Reports, 12(1):2302, February 2022. ISSN 2045-2322. doi: 10.1038/s41598-022-06134-6. URL www.nature.com/articles/s41598-022-06134-6. Number: 1 Publisher: Nature Publishing Group
  25. Raj Kamal Tiwari and Manab Kumar Das. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer, 50(9):2002-2018, May 2007. ISSN 0017-9310. doi: 10.1016/j.ijheatmasstransfer.2006.09.034. URL www.sciencedirect.com/science/article/pii/S001793100600576X
  26. Eiyad Abu-Nada and Hakan F. Oztop. Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid. International Journal of Heat and Fluid Flow, 30(4):669-678, August 2009. ISSN 0142-727X. doi: 10.1016/j.ijheatfluidflow.2009.02.001. URL www.sciencedirect.com/science/article/pii/S0142727X0900023X
  27. Zoubida Haddad, Hakan F. Oztop, Eiyad Abu-Nada, and Amina Mataoui. A review on natural convective heat transfer of nanofluids. Renewable and Sustainable Energy Reviews, 16(7):5363-5378, September 2012. ISSN 1364-0321. doi: 10.1016/j.rser.2012.04.003. URL www.sciencedirect.com/science/article/pii/S1364032112002602
  28. M. A. Sheremet, T. Grosan, and I. Pop. Free Convection in a Square Cavity Filled with a Porous Medium Saturated by Nanofluid Using Tiwari and Das' Nanofluid Model. Transport in Porous Media, 106(3):595-610, February 2015. ISSN 0169-3913, 1573-1634. doi: 10.1007/s11242-014-0415-3. URL link.springer.com/10.1007/s11242-014-0415-3
  29. Adrian Bejan. On the boundary layer regime in a vertical enclosure filled with a porous medium. Letters in Heat and Mass Transfer, 6(2):93-102, March 1979. ISSN 0094-4548. doi: 10.1016/0094-4548(79)90001-8. URL www.sciencedirect.com/science/article/pii/0094454879900018
  30. R. J. Gross, Melvin R. Baer, and Jr C. E. Hickox. The application of flux-corrected transport (fct) to high rayleigh number natural convection in a porous meduim. Begel House Inc., 1986. doi: 10.1615/IHTC8.3820. URL www.ihtcdigitallibrary.com/conferences/57dcad5042ab3940,00cc1ddb0a7a01be,495dcb5c29b8d4f0.html
  31. D.M. Manole and J.L. Lage. Numerical benchmark results for natural convection in a porous medium cavity. In Heat and Mass Transfer in Porous Media, ASME Conference 1992, volume 216, pages 55-60, 1992
  32. A. C. Baytas and I. Pop. Free convection in oblique enclosures filled with a porous medium. International Journal of Heat and Mass Transfer, 42(6):1047-1057, March 1999. ISSN 0017-9310. doi: 10.1016/S0017-9310(98)00208-7. URL www.sciencedirect.com/science/article/pii/S0017931098002087
  33. Qiang Sun and Ioan Pop. Free convection in a tilted triangle porous cavity filled with cu-water nanofluid with flush mounted heater on the wall. International Journal of Numerical Methods for Heat & Fluid Flow, 24(1):2-20, January 2014. ISSN 0961-5539. doi: 10.1108/HFF-10-2011-0226. URL doi.org/10.1108/HFF-10-2011-0226. Publisher: Emerald Group Publishing Limited
  34. Sivanandam Sivasankaran, Huey Tyng Cheong, and Marimuthu Bhuvaneswari. Natural convection in an inclined porous triangular enclosure with various thermal boundary conditions. Thermal Science, 23(2 Part A):537-548, 2019. URL www.doiserbia.nb.rs/Article.aspx?id=0354-98361800159S
  35. P.S. Rao and Prabir Barman. Natural convection in a wavy porous cavity subjected to a partial heat source. International Communications in Heat and Mass Transfer, 120:105007, January 2021. ISSN 07351933. doi: 10.1016/j.icheatmasstransfer.2020.105007. URL linkinghub.elsevier.com/retrieve/pii/S0735193320305352
  36. Mohammad Ghalambaz, Mikhail A. Sheremet, and Ioan Pop. Free Convection in a Parallelogrammic Porous Cavity Filled with a Nanofluid Using Tiwari and Das' Nanofluid Model. PLOS ONE, 10(5): e0126486, May 2015. ISSN 1932-6203. doi: 10.1371/journal.pone.0126486. URL dx.plos.org/10.1371/journal.pone.0126486