THERMAL SCIENCE
International Scientific Journal
EMPIRICAL CORRELATIONS TO PREDICT THERMOPHYSICAL AND HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS
ABSTRACT
Nanofluids exhibits larger thermal conductivity due to the presence of suspended nanosized solid particles in them such as Al2O3, Cu, CuO,TiO2, etc. Varieties of models have been proposed by several authors to explain the heat transfer enhancement of fluids such as water, ethylene glycol, engine oil containing these particles. This paper presents a systematic literature survey to exploit the thermophysical characteristics of nanofluids. Based on the experimental data available in the literature empirical correlation to predict the thermal conductivity of Al2O3, Cu, CuO, and TiO2 nanoparticles with water and ethylene glycol as base fluid is developed and presented. Similarly the correlations to predict the Nusselt number under laminar and turbulent flow conditions is also developed and presented. These correlations are useful to predict the heat transfer ability of nanofluids and takes care of variations in volume fraction, nanoparticle size and fluid temperature. The improved thermophysical characteristics of a nanofluid make it excellently suitable for future heat exchange applications. .
KEYWORDS
PAPER SUBMITTED: 2007-02-13
PAPER REVISED: 2007-07-11
PAPER ACCEPTED: 2007-09-21
THERMAL SCIENCE YEAR
2008, VOLUME
12, ISSUE
Issue 2, PAGES [27 - 37]
- Choi, S. U. S., Development and Applications of Non-Newtonian Flows, Vol. 66 (Ed. D. A. Singiner & H. P. Wang), ASME, 1995, pp. 99-105
- Wang, Q. X., Mujumdar, S. A., Heat Transfer Characteristics of Nanofluids: a Review, International Journal of Thermal Sciences, 46 (2007), 1, pp. 1-19
- Wang, X., Xu, X., Choi, S. U. S., Thermal Conductivity of Nanoparticles Fluid Mixture, Journal of ThermoPhysic Heat Transfer, 13 (1999), 4, pp. 474-80
- Eastman, J. A., et al., Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol Based Nanofluids Containing Copper Nanoparticles, Applied Physic Letters, 78 (2001), 6, pp. 718-720
- Das, S. K., et al., Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, Journal of Heat Transfer, 125 (2003), 4, pp. 567-574
- Kim, H. S., Choi, R. S., Kim, D., Thermal Conductivity of Metal-Oxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation, Journal of Heat Transfer, 129 (2007), 4, pp. 298-307
- Xuan, Y., Li, Q., Investigation of Convective Heat Transfer and Flow Features of Nanofluids, Journal of Heat Transfer, 125 (2003), 1, pp. 151-153
- Pak, B. C., Cho,Y. I., Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particle, Experimental Heat Transfer, 11 (1998), 2, pp. 151-170
- Wen, D., Ding, Y., Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions, International Journal Heat and Mass Transfer, 47 (2004), 24, pp. 5181-5188
- Heris, W. S., Esfahany, N. M., Etemad, Gh. S., Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube, International Journal of Heat and Fluid Flow, 28 (2007), 2, pp. 203-210
- Buongiorno, J., Convective Transport in Nanofluids, Journal of Heat and Mass Transfer 128 (2006), 3, pp. 240-250
- Das, S. K., Putra, N., Roetzel, W., Pooling Boiling Characteristics of Nanofluids, International Journal of Heat and Mass Transfer, 46 (2003), 5, pp. 851-862
- Chen, H., Ding, Y., He, Y., Tan, C., Rheological Behaviour of Ethylene Glycol Based Titania Nanofluids, Chemical Physics Letters, 444 (2007), 4, pp. 333-337
- Kukarni, P. D., Das, K. D., Chukwu, A. G., Temperature Dependent Rheological Property of Copper Oxide Nanoparticle Suspension (Nanofluid), Journal of Nanoscience and Nanotechnology, 6 (2006), 4, pp. 1150-1154
- Hamilton, R. L., Crosser, O. K., Thermal Conductivity of Heterogeneous Two Component Systems, Industrial and Engineering Chemistry Fundamentals, 1 (1962), 3, pp. 187-191
- Bruggeman, D. A. G., Calculation of Various Physical Constants of Heterogenous Substances, II Dielectricity Constants and Conductivity of non Regular Multi Crystal Systems (in German), Annalen der Physik, Leipzig, Germany, 430 (1935), pp. 285-313
- Spanier, E. J., Herman, P. I., Use of Hydrid Phenomenological and Statistical Effective-Medium Theories of Dielectric Functions to Model the Infrared Reflectance of Porous SIC Films, Physical Review, 61 (2000), 15, pp. 10437-10450
- Jeffrey, D. J., Conduction through a Random Suspension of Spheres, Proceedings of the Royal Society of London, Series A, 335, 1973, pp. 355-367
- Davis, R. H., Effective Thermal Conductivity of a Composites Material with Spherical Inclusions, International Journal of Thermophysics, 7 (1986), 3, pp. 609-620
- Jang, S. P., Choi, S. U. S., Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluid, Applied Physic Letters, 84 (2004), 24, pp. 4316-4318
- Maiga, S. B., et al., Heat Transfer Enhancement in Turbulent Tube Flow Using Al2O3 Nanoparticle Suspension, International Journal of Numerical Methods for Heat and Fluid Flow, 16 (2006), 3, pp. 275-292