THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

THE ENERGY OF COEFFICIENT INEQUALITIES FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS DEFINED BY DENIZ-OZKAN DIFFERENTIAL OPERATOR

ABSTRACT
By means of the Deniz-Ozkan differential operator, we introduce and investigate a new subclass of analytic functions. The various results obtained here for this function class include coefficient bounds and Fekete-Szego inequality.
KEYWORDS
PAPER SUBMITTED: 1970-01-01
PAPER REVISED: 2025-02-13
PAPER ACCEPTED: 2025-04-25
PUBLISHED ONLINE: 2025-09-26
DOI REFERENCE: https://doi.org/10.2298/TSCI2504023U
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2025, VOLUME 29, ISSUE Issue 4, PAGES [3023 - 3031]
REFERENCES
  1. Silverman, H., Univalent Functions with Negative Coefficients, Proc. Amer. Math. Soc., 51 (1975), 1, pp. 109-116
  2. Ali, M. R., et al., Coefficient Bounds for p-Valent Functions, Appl. Math. Comput., 187 (2007), 1. pp. 35-46
  3. Owa, S., A Remark on Certain Classes of Analytic Functions, Math. Japonica, 28 (1983), pp. 15-20
  4. Altintas, O., Coefficients of Some Analytic Functions, Doga TU Mat. D., 13 (1989), pp. 43-48
  5. Kamali, M., Kadioglu, E., On the Coefficients of Certain Analytic Functions, Far East J. Math. Sci., 5 (1997), 2, pp. 169-176
  6. Boyd, A. V., Coefficient Estimates for Starlike Functions of Order α, Proceedings of the American Mathematical Society, 17 (1996), 5, pp. 1016-1018
  7. Pommerenke, Ch., On Meromorphic Starlike Functions, Pacific J. Math., 13 (1963), pp. 221-235
  8. Kaczmarski, J., On the Coefficients of Some Classes of Starlike Functions, Bulletin DeL academie Polonaise Des Sciences Serie des Sciences Math. Astr. et Phys., 17 (1969), pp. 495-501
  9. Deniz, E., Ozkan, Y., Subclasses of Analytic Functions Defined by a New Differential Operator, Acta Uni. Apul, 40 (2014), pp. 85-95
  10. Deniz, E., Orhan, H., The Fekete Szego Problem for a Generalized Subclass of Analytic Functions, Kyungpook Math. J., 50 (2010), 1, pp. 37-47
  11. Salagean, G. S., Subclasses of Univalent Functions, Complex Analysis - Proceedings, 5th Rom.-Finn. Semin., Bucharest 1981, Part 1, Lect. Notes Math. 1013, pp. 362-372, 1983
  12. Keogh, F. R., Merkes, E. P., A Coefficient Inequality for Certain Classes of Analytic Functions, Proceedings of the American Mathematical Society, 20 (1969), 1, pp. 8-12
  13. Nehari, Z., Conformal Mapping, New York, 1952

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence