THERMAL SCIENCE

International Scientific Journal

SEVERAL FRACTIONAL INTEGRAL FORMULAS AND INTEGRAL TRANSFORMS OF THE HYPERGEOMETRIC SUPERCOSINE FUNCTION

ABSTRACT
In this paper, we propose fractional integral formulas of the hypergeometric supercosine involving Gauss hypergeometric series, derived from the Riemann- -Liouville, Erdelyi-Kober type, and Weyl fractional integral operators. Further-more, we demonstrate several integral transforms of the hypergeometric superco-sine.
KEYWORDS
PAPER SUBMITTED: 2024-05-16
PAPER REVISED: 2024-07-06
PAPER ACCEPTED: 2024-07-06
PUBLISHED ONLINE: 2025-07-06
DOI REFERENCE: https://doi.org/10.2298/TSCI2503829G
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2025, VOLUME 29, ISSUE Issue 3, PAGES [1829 - 1837]
REFERENCES
  1. Artin, E., The Gamma Function, Courier Dover Publications, Minerla, N. Y., USA, 2015
  2. Chaudhry, M. A., et al., Extension of Euler's Beta Function, Journal of Computational of Computational and Applied Mathematics, 78 (1997), 1, pp. 19-32
  3. Beukers, F., Gauss' Hypergeometric Function, in: Arithmetic and Geometry Around Hypergeometric Functions, Birkhauser, Basel, 2007, pp. 23-42
  4. Popov, A. Y., The Spectral Values of a Boundary Value Problem and the Zeros of Mittag-Leffer Functions, Differential Equations, 38 (2002), 5, pp. 642-653
  5. McKay, A. T., A Bessel Function Distribution, Biometrika, 24 (1932), May, pp. 39-44
  6. Yang, X. J., An Introduction to Hypergeometric, Supertrigonometric, and Superhyperbolic Functions, Academic Press, New York, USA, 2021
  7. Geng, L. L., et al., Turan-Type Inequalities for the Supertrigonometric Functions, Mathematical Methods in the Applied Sciences, 45 (2022), 7, pp. 3514-3519
  8. Geng, L. L., Yang, X. J., Turan-Type Inequalities for Two Hypergeometric Supertrigonometric Functions Associated with Kummer Confluent Hypergeometric Series of First Type, International Journal of Geometric Methods in Modern Physics, 19 (2022), 12, 2250191
  9. Andrews, G. E., et al., Special Functions, Cambridge University Press, Cambridge, Mass., USA, 1999
  10. He, J.-H., El-Dib, Y. O., A Tutorial Introduction to the Two-Scale Fractal Calculus and its Application to the Fractal Zhiber-Shabat Oscillator, Fractals, 29 (2021), 8, pp. 1-9
  11. Euler, L., Letter to Goldbach, Correspondence Math. et Phys., (1843), 1, pp. 549-552
  12. Legendre, A. M., Exercices de Calcul Integral, sur divers Ordres de Transcendantes, et sur les Quadratures, Paris, Mme Ve Courcier, Imprimeur-Libraire pour les Mathematiques, 1811
  13. Rosler, M., Dunkl operators: Theory and Applications, Orthogonal Polynomials and Special Functions, Lecture Notes in Mathematics, 1817 (2003), 1817, pp. 93-135
  14. Gray, A., Mathews, G. B., A Treatise on Bessel Functions and Their Applications to Physic, Macmillan, London, 1895
  15. Nikiforov, A. F., Uvarov, V. B., Special Functions of Mathematical Physics, Birkhaauser, Basel, 1988
  16. Yang, X. J., A New Integral Transform Operator for Solving the Heat-Diffusion Problem, Applied Mathematics Letters, 64 (2017), Feb., pp. 193-197
  17. Yang, X. J., et al., New Special Functions Applied to Represent the Weierstrass-Mandelbrot Function, Fractals, 32 (2023), 4, 2340113
  18. Yang X. J., The Y Function Applied in the Study of an Anomalous Diffusion, Thermal Science, 25 (2021), 6B, pp. 4465-4475
  19. Yang, X. J., et al., A New Odd Entire Function of Order one Arising in the Heat problem, Thermal Science, 27 (2023), 1B, pp. 505-512
  20. Kober, H., On Fractional Integrals and Derivatives, The Quarterly Journal of Mathematics, 11 (1940), 1, pp. 193-211
  21. Sahin, R., Yagcl, O., Fractional Calculus of the Extended Hypergeometric Function, Applied Mathematics and Non-Linear Sciences, 5 (2020), 1, pp. 369-384
  22. Nonnenmacher, T. F., Metzler, R., On the Riemann-Liouville Fractional Calculus and Some Recent Applications, Fractals, 3 (1995), 3, pp. 557-566
  23. Geng, L. L., Yang, X. J., Novel Chebyshev-Type Inequalities for the General Fractional-Order Integrals with the Rabotnov Fractional Exponential Kernel, Fractals, 31 (2023), 9, 2350126
  24. Saichev, A. I., Zaslavsky, G. M., Fractional Kinetic Equations: Solutions and Applications, Chaos: An Interdisciplinary Journal of Nonlinear Science, 7 (1997), 4, pp. 753-764
  25. Euler, L., Correspondance Mathematique. et physique.de quelques C ∀ abc (a=b) ∧ (a=c)=>a =c lebres Geometres Du 18eme siecle, Publiee Par Fuss, 1. Letter to Goldbach, 1729
  26. Legendre, A. M., Exercices de Calcul Integral, Courcier, Paris, 1814
  27. Yang, X. J., Theory and Applications of Special Functions for Scientists and Engineers, Springer, Singapore, 2021
  28. Pochhammer, L., Ueber Hypergeometrischen Funktionen Hoheren Ordungen, Journal fr die Reine und Angewandte Mathematik, 71 (1870), 216
  29. He, J.-H., et al., Beyong Laplace and Fourier Transforms Challenges and Future Prospects, Thermal Science, 27 (2023), 6B, pp. 5075-5089
  30. Laplace, P. S., Théorie Analytique Des Probabilités, Courcier, 1820, (First appeared in 1812)
  31. Geng, L. L., et al., New Fractional Integral Formulas and Kinetic Model Associated with the Hypergeo-metric Superhyperbolic Sine Function, Mathematical Methods in the Applied Sciences, 46 (2023), 2, pp. 1809-1820
  32. Chand, Prajapati J. C., et al., Fractional Calculus and Applications of Family of Extended Generalized Gauss Hypergeometric Functions, Discrete and Continuous Dynamical Systems-S, 13 (2020), 3, pp. 539-560
  33. Anjum, N., et al., Free Vibration of a Tapered Beam by the Aboodh Transform-based Variational Iteration Method, Journal of Computational Applied Mechanics, 55 (2024), 3, pp. 440-450

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence