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In this paper, we propose fractional integral formulas of the hypergeometric
supercosine involving Gauss hypergeometric series, derived from the Riemann-
-Liouville, Erdelyi-Kober type, and Weyl fractional integral operators. Further-
more, we demonstrate several integral transforms of the hypergeometric superco-
sine.
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Introduction

Special functions are particular mathematical functions, including gamma [1], beta
[2], Gauss hypergeometric [3], Mittag-Leffer [4], Bessel [5], and hypergeometric supergeo-
metric functions [6-8], which have been commonly employed in the domains of mathematical
analysis, mathematical physics, and engineering science [9, 10].

In the 1820’s, Euler proposed the gamma function, Bessel function, and elliptic in-
tegral while studying differential equations. Among these, the gamma function exhibited a
particularly strong interpolation property [11]. This distinctive attribute not only reinforces
the theoretical underpinnings of mathematics but also has a multitude of applications in the
realms of physics and engineering. Towards the end of the 18" century, Legendre was pro-
posed for research in astronomy [12]. In the 1820’s, the Legendre function was proposed in
conjunction with the development of harmonic analysis [13]. A variety of orthogonal poly-
nomials have been proposed. By the end of the 19™ century, the framework of special func-
tions that is currently in use had been established to a significant extent [14]. At the outset of
the 20™ century, the theory and application of special functions began to permeate the field of
physics to a greater extent [15].

By means of the exponential, Kohlrausch-Williams-Watts (KWW), and Mittag-Lef-
fler functions, Gauss hypergeometric series, Kummer confluent hypergeometric series, and Y
function, Yang [16] studied the definition and properties of a series of new special functions.
It was intimately connected to scaling laws and Caputo fractional derivatives, differential
equations, Turan-type inequalities, integral expressions, integral transforms, and differential
and integral operators.
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Additionally, the authors investigated the significant conjectures surrounding the
subtrigonometric functions based on the exponential function, which have been demonstrated
to possess zeros. Moreover, the authors constructed mathematical models for the fractional-
order dynamics, generalized heat-conduction equation, and one-dimensional heat equation us-
ing new special functions. In addition, Yang [17-19] not only investigated the interrelation-
ships between the Y, Fox H, and Meijer G functions, Wright generalized hypergeometric
function, Clausen hypergeometric function, and exponential, Mittag-Leffler, Wiman, Prab-
hakar, and KWW functions, but also studied the representation of the Lambda function and
associated results such as the Riemann, Jensen, and Newman conjectures. By considering the
initial and boundary conditions of Dirichlet-type, Newman-type, and Cauchy-type, Yang
[17-19] constructed mathematical models for the heat equations with solutions for the family
of entire functions. He also constructed a connection among analytical number theory, Fourier
transform (the sine integral transform), and partial differential equation (the heat-conduction
equation).

Throughout this paper, let C, R, and N be the sets of the complex, real, and natural
numbers, respectively.

Let us recall the fractional integral operators involving Gauss hypergeometric func-

tion [20]:
. k-1 X o t
(15 F (1) = );(K) £(X -1) 12 K [’( + K1 — ;} f(t)dt @
and
Kt 1 7 K—14—K—1 t
[ T 0109 = T {(t —X)* MR [K +1,— k1 —ﬂ f (t)dt )

where x>0, «,u,1eC, R(x)>0, and ,K[.] is Gauss hypergeometric function.
Meanwhile, the Erdelyi-Kober type fractional integral operators are given by [21]:

K, _X_K_ux _\x1
(E54 £)(x) = oo {(x )< f (t)dt [R(x) > 0] 3)
and
KU _ Xla T o\ K l—x—u
(Kx,wf)(x)——r(K)j(t ) ()dt [R(x) > 0] (4)

X

In addition, the Riemann-Liouville fractional integral operator is [22, 23]:
1 X
(Rox 1)) =——[(x—t)* " f ()t (5)
(%)
and Weyl fractional integral operator [15]:

K _ioo _x1
(Wx,wf)(x)—r(,{) {(x O f ()t (6)
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Gamma function I'(x) is introduced by [24, 25]:
() = [ 't 1dt [R(x) > 0] (7)
0

Hypergeometric supercosine via Gauss hypergeometric series is proposed by (see
[26] p. 23):

w 1\ y2n
Zsupercosl(a,ﬁ;j/; X)=r§’(a)(2;)(2’i)2n ( (lz)n;(l

where «, 3,7, xeC, neN, |xkl, xeC, ueN, and the Pochhammer symbol (K)ﬂ [27]
is expressed:

(8)

Tk+up) J1(u=0),
W ="To _{K(K+l)---(lc+y—l) (ueN) ®)
The Beta transform is defined by [28]:
1
B{f(z):a,b}= j 2211-2)" 1 (2)dz (10)
0

The Laplace and generalized integral transform are widely used independently in
engineering for linear differential equations including fractional differential equations [29].
The Laplace transform is given by [30]:

{f()}= j e f (t)dt (11)
0
and the corresponding inverse Laplace transform by:
r+iT
f(t) = SHF(s)}= i lim j e f(s)ds (12)
2m T r—iT

Preliminaries

In this section, let’s recall some important lemmas
Lemma 1 [31] Suppose «,1, 1,0 C. Then:

rereé+u—ri

IK,t,ytH—l X) = X@—t—l 13
(ox™ )0 [0 - )T (x+ u+6) 13)

and
(\]K,l,uté’fl)(x) — Xé’ftfl F(l -0+ 1)F(ﬂ -+ 1) (14)

X TFA-OT(k+1+u—0+1)
are true.
Lemma 2 [31] If x, 1,0 € C,then we have:
gty O a4 T(u+6)

Eytt?y(x)=x0t —E 2 15
E5t" 00 =x" s (15)

and
(K 0 =x+_LW=0rD (16)

I'k+pu—-60+1)
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Lemma 3 [31] Let x,6  C. Then we have:

Kk $6-1 _ yO+x-1 1—‘(9)
R 00 =X L7 an
and
K 40-1y _ O+x-1 I'(l-x-0)
(Wt =x = o (18)

Fractional integral operators of
hypergeometric supercosine

In this section, we consider the Riemann-Liouville, Erdelyi-Kober, and Weyl frac-
tional integral operators, proposing some fractional integral formulas of hypergeometric
supercosine based on Gauss hypergeometric series.

Theorem 1 Suppose rxnu,0eC, Rx)>0, R(O)>max[0,R(z—)], and
R(y) >R(L) >0. Then:

151%™, Supercos, (a, B;7;1)](X) =

_ o1 _TOT@+u-1)
r@-or(x+u+0),

*,Supercos, (6,0 + u—1,0 —1,k + u+ 6;X)

Supercos, (a, 5;7: X) (19

Proof. According to (8) and then changing the order of integration and summation,
we have:

(1524492, Supercos, (@, Ay D](X) = é{(“)(z;)(j Jan ((;]))! [lg;;’”tml}(x) (20)

Based on (13), we obtain:
o (a)Zn (ﬂ)Zn (_1)n K11 0+2n-1 _
Z(:J{ Dm0t }(X) )

o1 @By TO+2MNO+ =i 2m) (D' 1)
S (1) T(O—1+20(k+u+6+2n) (2n)!

_ 01 TOTO+p—1) <o (@)(B)on  (0)pn(O+u—1),, (-1)" X"
F(H_Z)F(K+ﬂ+9) n=0 (7)2n (H_Z)Zn (K+/J+€)2n (2!’1)!

Therefore, in view of (21), we acquire:

151%™, Supercos, (a, B;7;1)](X) =

_ o _TOTO+u-1
r@-ori(x+u+0),

*,Supercos, (6,0 + u—1,60 — i,k + 1+ 6;X)

Supercos, (a, 5;7: X) (22)
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Theorem 2 Let x,7,14,60 e C, R(x) >0, and 93(c) >MR(b) >0. Then:

[J’x‘;ég”tf"leupercosl(a,ﬂ: y:%ﬂ(x) =

_ i T=0+DI(u=0+1)
T(1-OT(k+1+u—60+1),

Supercos, (a, By l) (23)
X
* 1
,Supercos, l—(9+l,y—9+1;1—9,K+1+,u—9+1;;
Proof. By (8), we have:

[Jf";“tg‘lzsupercosl (a, B; y;%ﬂ (x) =
(24)

_ < (@) (B)2n (D" Jbup0-2n-1
MU AN

What’s more, by means of (14), we get:

& (@0 (B)on (D" JK,,,ytg_Zn_l} _
Zi T TR

. 1 2n
_o$ @B Te=0r204 0020+ ) .
= Mo TEO+2N+DI(k+1+p—-0+2n+1)  (2n)!

] 1 2n
V! F@=0+DI(u—-0+1) & (@)n(Bon (=0 +1),, (-0 +1),, ) (Xj
FA-O(x+1+u—-0+0)= (1) Q=) p(c+1+p—0+1),, (2n)!

In view of the Hadamard product [32], we have:

[J’;’;"telzsupercosl (a, By %H (x) =

_ ot IrGc-0+H(u—60+1)
rqa-or(x+i+u—-60+1,

Supercos; (a, By 3 (26)

*,Supercos, (z—6’+l,,u—9+1;1—6’,/c+l+,u—€+1;§j

As direct results, we have following:
Corollary 1 Let x, 1,0 € C, R(x)>0, and R(y) >R(B)>0. Then:

I'(u+0) .
—F(K T ut0), Supercos, (e, £;7;X) @)

* Supercos; (¢ + 6; x + 1+ 0; X)

[E§:£t°,Supercos, (@, B;7;t)](x) = x**
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Corollary 2 Suppose «,0€C, R(x)>0, and R(y) >R(B) >0. Then:

') o
r0+x), Supercos, (a, £ 7 X) 28)

* Supercos, (6; 0 + k; X)
Corollary 3 If x,0C, PR(x)>0, and R(y) >R(L) >0, then:

o 1 A T(1=x—0) 1
WE 1971 sy ercos( B ;—ﬂ x)=x01 =7 gy ercos( B ;—j
|:X,oo 2oUp 105,37/,[ (x) ra-o) , p 105,37)(

[R} ,t7,Supercos, (a, £; 7;1)](X) =

(29)
* Supercos; (1 -x—-6,1-0, %j

Some integral transforms of
hypergeometric supercosine

In this section, the Beta transform and Laplace transform of the hypergeometric
supercosine based on Gauss hypergeometric series are introduced.

Theorem 3 Let «x,4,,60,1eC, R(x)>0, R(O)>max[0,7R(—)], and
R(y) > R(B) >0. Then:

B{[15:+t°*,Supercos, (e, B; 7;t2)1(x) : I, m} =

— Xe_l_lB(I, m) F(H)F(e +H- l)
r@-or(x+u+0),

*,Supercos; (u,0+ pu—1,1;60 —1,x + u+ 6,1+ m; x)

Supercos, (@, 3;7; X) (30)

Proof. Let:
B = B{[15%“t” ™, Supercos, (a, B;7;tz)](x) : 1, m} (31)

Then we have:

B =27 (1 2)" 155417 Supercos, (@, B; 7;tz)](x)dz (32)

O —y

After a series of simplifications, we have:

n=-0 (7)2n (2n)! or

0130 @ (Blon (DX T(O+20)(0 + =1+ 2n) j'z'+2n—1(1—2)m_ldz=
o (Man (2n)! T(@—t+2mT(x+pu+6+2n)y

0 n 1
B = (a)2n (/B)Zn (_1) (Ik,z,yt2n+0—1)(x)“'ZI+2n—1(1 _ Z)m—ldZ _
0

_ o E (@) (B)an ((D"X*" T(O+2MI(@+pu—1+2n) T(+2mI(m)

- = ()on (2n)! T(@-1+2m(k+u+60+2n) T1+m+2n)
=X0_’_lB(| m) FOTO+pu—1) S (@)n(Ban (0)20(0+ 1 —1),, (1)2n (—1)nX2n
CUTO-0ON(k+ u+0) 15 (Nan (O=0pn(K+ p+0)y, (14 M)y, (20)!
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Therefore, we obtain:

B{(I5::+t°,Supercos, (e, B; 7:t2))(X) : 1, m} =

— Xe_l_lB(I, m) r(e)r(e +H- l)
r@-or(x+u+0),

*,Supercosg(u, 0+ u—1,1;6 — 1,k + 1+ 6,1 + m; x).

Supercos, (@, 3;7; X) (33)

Theorem 4 Let «,5,1,0,1eC, R(x)>0, R(O)>max[0,R(—)], and
R(y) > R(B) >0. Then we have:
{2153 1° 7, Supercos, (@, B 7;2)] () X(s) =
XL THDOT(O + - 1)
8 T@-0T(c+u+6),

Supercos, (a, £;7; 2) (34)

*3SUpeI‘COSZ(9,9+y—l,|;0—l,l€+,u+0;§)

Proof. By applying the Laplace transform, we have:
Sz 1517, Supercos, (a, £ 7; )] (0 X(s) =

* 35
= J'e‘szz"l[lg;;"‘ta‘leupercosl(a, By:t2)(X)]dz (39)
0

After a series of simplification, we gain:

_[e 2218 4t0, Supercos, (a, £; 7;tz)(X)]1dz =

011 (@) (B)on (D)"X* T(@+2MI(O+ z—1+2n) Tl +2n)
=x"y o= (36)
= (an @n)! T@-1+2nN(x+u+0+2n) g*+n
X TOLOT G+ =0 & (@anBan (DX (0)an 0+ =030 (1)
s' T@-0)I(x+u+0) o Mo (2n)! (0 —1)n (x + u+0),, 2"

Thus, we get the following result:

{215 17 ,Supercos, (a, B; ;)] ()}(s) =
X T (YOO + i~ 1)
8 TO-0T(c+u+6),

Supercosl(a,ﬁ:%i) (37)
S
*;3Supercos, (6,0 + u —l,|;t9—l,l€+,u+t9;§).
Conclusion

This paper presents fractional integral formulas of the hypergeometric supercosine
involving Gauss hypergeometric series, and several integral transforms of the hypergeometric
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supercosine are recommended. Further applications of the integral transforms to solving dif-
ferential equations are discussed in [33].
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