THERMAL SCIENCE
International Scientific Journal
QUANTUM CORRELATIONS AND FISHER INFORMATION IN MULTIPARTITE TWO-LEVEL SYSTEM UNDER KERR MEDIUM EFFECT
ABSTRACT
This paper investigates the evolution of global quantum discord (GQD) and quantum Fisher information (QFI) of the interaction of multiple two-level atomic systems (TLS) with a single thermal field mode and a non-linear Kerr medium (NLKM) considering the cases of intrinsic decoherence and its absence. Results indicate that increasing the number of atomic systems (N) while maintaining the NLKM parameter constant χ leads to higher GQD and QFI values for both intrinsic intrinsic decoherence cases. With rising χ, the GQD values decrease but the oscillation rate of the GQD increases. The presence of intrinsic decoherence does not significantly reduce the GQD quasi-static value compared to the no-decoherence scenario for certain χ values. At the same time, a different trend is observed for higher χ values. The average QFI value rises with reduced oscillation amplitudes for higher χ values and larger N subsystems. Unlike the GQD, higher χ values aid in maintaining average QFI in the presence of intrinsic decoherence. For moving TLS, changing χ does not alter the oscillation periods of the GQD and QFI. The GQD values decrease with increased χ in the moving system case, while the QFI improves with higher χ values. Additionally, higher average thermal photons within the system suppress the GQD and QFI values and decrease oscillation amplitudes for both quantifiers.
KEYWORDS
PAPER SUBMITTED: 2024-07-13
PAPER REVISED: 2024-09-30
PAPER ACCEPTED: 2024-10-29
PUBLISHED ONLINE: 2025-02-22
THERMAL SCIENCE YEAR
2025, VOLUME
29, ISSUE
Issue 1, PAGES [347 - 358]
- Buluta, I., et al., Natural and Artificial Atoms for Quantum Computation, Rep. Prog. Phys., 74 (2011), 104401
- Kim, M. S., et al., Entanglement induced By A Single-Mode Heat Environment, Phys. Rev. A, 65 (2002), 04010
- Zhang, B., Entanglement between Two Qubits Interacting with a Slightly Detuned Thermal Field, Opt. Commun., 283 (2010), 23, pp. 4676-4679
- Zhou, L., Song, H. S., Entanglement Induced by a Single-Mode Thermal Field and the Criteria for Entanglement, J. Opt. B: Quantum Semiclass. Opt., 4 (2002), 425
- Bashkirov, E. K., Entanglement Induced by the Two-Mode Thermal Noise, Laser Phys. Lett., 3 (2006), 145
- Aguiar, L. S., et al., The Entanglement of Two Dipole-Dipole Coupled Atoms in a Cavity Interacting with a Thermal Field, J. Opt. B: Quantum Semiclass. Opt., 7 (2005), S769
- Bashkirov, E. K., Stupatskaya, M. P., The Entanglement Of Two Dipole-Dipole Coupled Atoms Induced by Non-Degenerate Two-Mode Thermal Noise, Laser Phys., 19 (2009), Mar., pp. 525-530
- Jaynes, E. T., Cummings, F. W., Comparison of Quantum and Semiclassical Radiation Theories with Application the Beam Maser, Proc. IEEE, 51 (1963), 1, pp. 89-109
- Liu, Z. D., et al., The Properties of a Light Field Interacting with a Four-Level Atom, J. Mod. Opt., 45 (1988), 5, pp. 833-842
- Liu, X., Entropy Behaviors And Statistical Properties of the Field Interacting with a Ξ-Type Three-Level Atom, Physica A, 286 (2000), 3-4, pp. 588-598
- Abdel-Khalek, S., Nofal, T. A., Correlation and Entanglement of a Three-Level Atom Inside a Dissipative Cavity, Physica A, 390 (2011), 13, pp. 2626-2635
- Eleuch, H., et al., Effects of an Environment on a Cavity-Quantum-Electrodynamics System Controlled by Bichromatic Adiabatic Passage, Phys. Rev. A, 85 (2012), 013830
- Abdel-Aty, A., et al., Entanglement and Teleportation Via a Partial Entangled-State Quantum Network, J. Comput. Theor. Nanosci., 12 (2015), 9, pp. 2213-2220
- Bennett, C. H., DiVincenzo, D. P., Towards an Engineering Era, Nature, 377 (1995), Oct., pp. 389-390
- Cirac, J. I., Zoller, P., A Scalable Quantum Computer with Ions in an Array of Micro Traps, Nature, 404 (2000), Apr., pp. 579-581
- Divincenzo, D. P., Quantum Computation, Science, 270 (1995), Oct., pp. 255-261
- Grover, L. K., Quantum computers Can Search Arbitrarily Large Databases by a Single Query, Phys. Rev. Lett., 79 (1997), 4709
- Yin, Z.-Q., et al., Security of Counterfactual Quantum Cryptography, Phys. Rev. A, 85 (2010), 042335
- Noh, T. G., Counterfactual Quantum Cryptography, Phys. Rev. Lett., 103 (2009), 230501
- Louisell, W. H., et al., Quantum Fluctuations And Noise In Parametric Processes, Phys. Rev., 124 (1961), 1646
- Bennett, C. H., DiVincenzo, D. P., Quantum information and Computation, Nature, 404 (2000), pp. 247-255
- Abdel-Khalek, et al., Effect of time Dependent Coupling on the Dynamical Properties of the Non-Local Correlation between Two Three-Level Atoms, International Journal of Theoretical Physics, 56 (2017), June, pp. 2898-2910
- Abdalla, M. S., Nassar, M. M., Quantum Treatment of the Time-Dependent Coupled Oscillators under the Action of a Random Force, Ann. Phys., 324 (2009), 3, pp. 637-669
- Korashy, S.T., et al., Dynamics of a Non-Linear Time-Dependent Two Two-Level Atoms in a Two-Mode Cavity, Int. J. Quantum Inf., 18 (2020), 2050003
- Korashy, S. T., et al., Influence of Stark shift and Kerr-Like Medium on the Interaction of a Two-Level Atom with Two Quantized Field Modes: A Time-Dependent System, Quant. Inf. Rev.. 5 (2017), 1, pp. 9-14
- Fisher, R. A., Theory of Statistical Estimation, Proc. Cambridge Philos. Soc., 22 (1925), 5, pp. 700-725
- Barndorff-Nielsen, O. E., Gill, R. D., Fisher Information In Quantum Statistics., J. Phys. A: Math. Gen., 33 (2000), 4481
- Giovannetti, V., et al., Quantum Metrology, Phys. Rev. Lett., 96 (2006), 010401
- Lu, X.-M., et al., Hierarchy of Measurement-Induced Fisher Information for Composite States, Phys. Rev. A, 86 (2012), 022342
- Milburn, G. J., Intrinsic decoherence in Quantum Mechanics, Phys. Rev. A, 44 (1991), 5401
- Henderson, L., et al., Quantum and Total Correlations, J. Phys. A, 34 (2001), 6899
- Ollivier, H., Zurek, W. H., Quantum Discord: A Measure of the Quantumness of Correlations, Phys. Rev. Lett., 88 (2002), 017901
- Rulli, C. C., Sarandy, M. S., Global Quantum Discord in Multipartite Systems, Phys. Rev. A, 84 (2011), 042109
- Modi, K., et al., Unified View of Quantum and Classical Correlations, Phys. Rev. Lett., 104 (2010), 080501
- Chakrabarty, I., et al., Quantum Dissension: Generalizing Quantum Discord for Three-Qubit States, Eur. Phys. J. D., 56 (2011), Dec., pp. 605-612
- Chen, L., et al., Detecting Multipartite Classical States and Their Resemblances, Phys. Rev. A, 83 (2011), 020101(R)
- Berrada, K., et al., Quantum Metrology with Entangled Spin-Coherent States of Two Modes, Phys. Rev. A, 86 (2012), 033823
- Wootters, W. K., Entanglement of Formation and Concurrence, Quantum Inf. Comput., 1 (2001), 1, pp. 27-44
- Lu, X., et al., Quantum Fisher Information Flow and Non-Markovian Processes of Open Systems, Phys. Rev. A, 82 (2010), 042103
- Barndorff-Nielsen, O. E., et al., On Quantum Statistical Inference, J. R. Stat. Soc. B, 65 (2003), 4, pp. 775-816
- Tavis, M., Cummings, F. W., Exact Solution for an N-Molecule-Radiation-Field Hamiltonian, Phys. Rev., 170 (1968), 379
- Schlicher, R. R., Jaynes-Cummings Model with Atomic Motion, Opt. Commun., 70 (1989), 2, pp. 97-102
- Guo J. L., Song H. S., Entanglement between two Tavis-Cummings Atoms with Phase Decoherence, J. Mod. Opt., 56 (2009), 4, pp, 496-501
- Campbell, S., et al., Global Quantum Correlations in Finite-Size Spin Chains, New J. Phys., 15 (2013), 043033