THERMAL SCIENCE

International Scientific Journal

QUANTUM CORRELATIONS AND FISHER INFORMATION IN MULTIPARTITE TWO-LEVEL SYSTEM UNDER KERR MEDIUM EFFECT

ABSTRACT
This paper investigates the evolution of global quantum discord (GQD) and quantum Fisher information (QFI) of the interaction of multiple two-level atomic systems (TLS) with a single thermal field mode and a non-linear Kerr medium (NLKM) considering the cases of intrinsic decoherence and its absence. Results indicate that increasing the number of atomic systems (N) while maintaining the NLKM parameter constant χ leads to higher GQD and QFI values for both intrinsic intrinsic decoherence cases. With rising χ, the GQD values decrease but the oscillation rate of the GQD increases. The presence of intrinsic decoherence does not significantly reduce the GQD quasi-static value compared to the no-decoherence scenario for certain χ values. At the same time, a different trend is observed for higher χ values. The average QFI value rises with reduced oscillation amplitudes for higher χ values and larger N subsystems. Unlike the GQD, higher χ values aid in maintaining average QFI in the presence of intrinsic decoherence. For moving TLS, changing χ does not alter the oscillation periods of the GQD and QFI. The GQD values decrease with increased χ in the moving system case, while the QFI improves with higher χ values. Additionally, higher average thermal photons within the system suppress the GQD and QFI values and decrease oscillation amplitudes for both quantifiers.
KEYWORDS
PAPER SUBMITTED: 2024-07-13
PAPER REVISED: 2024-09-30
PAPER ACCEPTED: 2024-10-29
PUBLISHED ONLINE: 2025-02-22
DOI REFERENCE: https://doi.org/10.2298/TSCI2501347A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2025, VOLUME 29, ISSUE Issue 1, PAGES [347 - 358]
REFERENCES
  1. Buluta, I., et al., Natural and Artificial Atoms for Quantum Computation, Rep. Prog. Phys., 74 (2011), 104401
  2. Kim, M. S., et al., Entanglement induced By A Single-Mode Heat Environment, Phys. Rev. A, 65 (2002), 04010
  3. Zhang, B., Entanglement between Two Qubits Interacting with a Slightly Detuned Thermal Field, Opt. Commun., 283 (2010), 23, pp. 4676-4679
  4. Zhou, L., Song, H. S., Entanglement Induced by a Single-Mode Thermal Field and the Criteria for Entanglement, J. Opt. B: Quantum Semiclass. Opt., 4 (2002), 425
  5. Bashkirov, E. K., Entanglement Induced by the Two-Mode Thermal Noise, Laser Phys. Lett., 3 (2006), 145
  6. Aguiar, L. S., et al., The Entanglement of Two Dipole-Dipole Coupled Atoms in a Cavity Interacting with a Thermal Field, J. Opt. B: Quantum Semiclass. Opt., 7 (2005), S769
  7. Bashkirov, E. K., Stupatskaya, M. P., The Entanglement Of Two Dipole-Dipole Coupled Atoms Induced by Non-Degenerate Two-Mode Thermal Noise, Laser Phys., 19 (2009), Mar., pp. 525-530
  8. Jaynes, E. T., Cummings, F. W., Comparison of Quantum and Semiclassical Radiation Theories with Application the Beam Maser, Proc. IEEE, 51 (1963), 1, pp. 89-109
  9. Liu, Z. D., et al., The Properties of a Light Field Interacting with a Four-Level Atom, J. Mod. Opt., 45 (1988), 5, pp. 833-842
  10. Liu, X., Entropy Behaviors And Statistical Properties of the Field Interacting with a Ξ-Type Three-Level Atom, Physica A, 286 (2000), 3-4, pp. 588-598
  11. Abdel-Khalek, S., Nofal, T. A., Correlation and Entanglement of a Three-Level Atom Inside a Dissipative Cavity, Physica A, 390 (2011), 13, pp. 2626-2635
  12. Eleuch, H., et al., Effects of an Environment on a Cavity-Quantum-Electrodynamics System Controlled by Bichromatic Adiabatic Passage, Phys. Rev. A, 85 (2012), 013830
  13. Abdel-Aty, A., et al., Entanglement and Teleportation Via a Partial Entangled-State Quantum Network, J. Comput. Theor. Nanosci., 12 (2015), 9, pp. 2213-2220
  14. Bennett, C. H., DiVincenzo, D. P., Towards an Engineering Era, Nature, 377 (1995), Oct., pp. 389-390
  15. Cirac, J. I., Zoller, P., A Scalable Quantum Computer with Ions in an Array of Micro Traps, Nature, 404 (2000), Apr., pp. 579-581
  16. Divincenzo, D. P., Quantum Computation, Science, 270 (1995), Oct., pp. 255-261
  17. Grover, L. K., Quantum computers Can Search Arbitrarily Large Databases by a Single Query, Phys. Rev. Lett., 79 (1997), 4709
  18. Yin, Z.-Q., et al., Security of Counterfactual Quantum Cryptography, Phys. Rev. A, 85 (2010), 042335
  19. Noh, T. G., Counterfactual Quantum Cryptography, Phys. Rev. Lett., 103 (2009), 230501
  20. Louisell, W. H., et al., Quantum Fluctuations And Noise In Parametric Processes, Phys. Rev., 124 (1961), 1646
  21. Bennett, C. H., DiVincenzo, D. P., Quantum information and Computation, Nature, 404 (2000), pp. 247-255
  22. Abdel-Khalek, et al., Effect of time Dependent Coupling on the Dynamical Properties of the Non-Local Correlation between Two Three-Level Atoms, International Journal of Theoretical Physics, 56 (2017), June, pp. 2898-2910
  23. Abdalla, M. S., Nassar, M. M., Quantum Treatment of the Time-Dependent Coupled Oscillators under the Action of a Random Force, Ann. Phys., 324 (2009), 3, pp. 637-669
  24. Korashy, S.T., et al., Dynamics of a Non-Linear Time-Dependent Two Two-Level Atoms in a Two-Mode Cavity, Int. J. Quantum Inf., 18 (2020), 2050003
  25. Korashy, S. T., et al., Influence of Stark shift and Kerr-Like Medium on the Interaction of a Two-Level Atom with Two Quantized Field Modes: A Time-Dependent System, Quant. Inf. Rev.. 5 (2017), 1, pp. 9-14
  26. Fisher, R. A., Theory of Statistical Estimation, Proc. Cambridge Philos. Soc., 22 (1925), 5, pp. 700-725
  27. Barndorff-Nielsen, O. E., Gill, R. D., Fisher Information In Quantum Statistics., J. Phys. A: Math. Gen., 33 (2000), 4481
  28. Giovannetti, V., et al., Quantum Metrology, Phys. Rev. Lett., 96 (2006), 010401
  29. Lu, X.-M., et al., Hierarchy of Measurement-Induced Fisher Information for Composite States, Phys. Rev. A, 86 (2012), 022342
  30. Milburn, G. J., Intrinsic decoherence in Quantum Mechanics, Phys. Rev. A, 44 (1991), 5401
  31. Henderson, L., et al., Quantum and Total Correlations, J. Phys. A, 34 (2001), 6899
  32. Ollivier, H., Zurek, W. H., Quantum Discord: A Measure of the Quantumness of Correlations, Phys. Rev. Lett., 88 (2002), 017901
  33. Rulli, C. C., Sarandy, M. S., Global Quantum Discord in Multipartite Systems, Phys. Rev. A, 84 (2011), 042109
  34. Modi, K., et al., Unified View of Quantum and Classical Correlations, Phys. Rev. Lett., 104 (2010), 080501
  35. Chakrabarty, I., et al., Quantum Dissension: Generalizing Quantum Discord for Three-Qubit States, Eur. Phys. J. D., 56 (2011), Dec., pp. 605-612
  36. Chen, L., et al., Detecting Multipartite Classical States and Their Resemblances, Phys. Rev. A, 83 (2011), 020101(R)
  37. Berrada, K., et al., Quantum Metrology with Entangled Spin-Coherent States of Two Modes, Phys. Rev. A, 86 (2012), 033823
  38. Wootters, W. K., Entanglement of Formation and Concurrence, Quantum Inf. Comput., 1 (2001), 1, pp. 27-44
  39. Lu, X., et al., Quantum Fisher Information Flow and Non-Markovian Processes of Open Systems, Phys. Rev. A, 82 (2010), 042103
  40. Barndorff-Nielsen, O. E., et al., On Quantum Statistical Inference, J. R. Stat. Soc. B, 65 (2003), 4, pp. 775-816
  41. Tavis, M., Cummings, F. W., Exact Solution for an N-Molecule-Radiation-Field Hamiltonian, Phys. Rev., 170 (1968), 379
  42. Schlicher, R. R., Jaynes-Cummings Model with Atomic Motion, Opt. Commun., 70 (1989), 2, pp. 97-102
  43. Guo J. L., Song H. S., Entanglement between two Tavis-Cummings Atoms with Phase Decoherence, J. Mod. Opt., 56 (2009), 4, pp, 496-501
  44. Campbell, S., et al., Global Quantum Correlations in Finite-Size Spin Chains, New J. Phys., 15 (2013), 043033

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence